Data Augmentation for Bridging the Delay Gap in DL-Based Massive MIMO CSI Feedback

被引:1
|
作者
Zhang, Hengyu [1 ]
Lu, Zhilin [2 ]
Zhang, Xudong [1 ]
Wang, Jintao [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Lab High Technol, Beijing 100084, Peoples R China
关键词
Massive MIMO; CSI feedback; deep learning; data augmentation;
D O I
10.1109/LWC.2024.3368558
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In massive multiple-input multiple-output (MIMO) systems under the frequency division duplexing (FDD) mode, the user equipment (UE) needs to feed channel state information (CSI) back to the base station (BS). Though deep learning approaches have made a hit in the CSI feedback problem, whether they can remain excellent in actual environments needs to be further investigated. In this letter, we point out that the real-time dataset in application often has the domain gap from the training dataset caused by the time delay. To bridge the gap, we propose bubble-shift (B-S) data augmentation, which attempts to offset performance degradation by changing the delay and remaining the channel information as much as possible. Moreover, random-generation (R-G) data augmentation is especially proposed for outdoor scenarios due to the complex distribution of its channels. It generalizes the characteristics of the channel matrix and alleviates the over-fitting problem. Simulation results show that the proposed data augmentation boosts the robustness of networks in both indoor and outdoor environments.
引用
收藏
页码:1315 / 1319
页数:5
相关论文
共 50 条
  • [31] Facilitating AI-Based CSI Feedback Deployment in Massive MIMO Systems With Learngene
    Li, Xiangyi
    Guo, Jiajia
    Wen, Chao-Kai
    Geng, Xin
    Jin, Shi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 11325 - 11340
  • [32] A Novel Quantization Method for Deep Learning-Based Massive MIMO CSI Feedback
    Chen, Tong
    Guo, Jiajia
    Jin, Shi
    Wen, Chao-Kai
    Li, Geoffrey Ye
    2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [33] Probability Distribution-Based CSI Feedback for Massive MIMO Systems
    Jang, Youngrok
    Kim, Taehyoung
    Choi, Sooyong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6833 - 6838
  • [34] Deep Learning-Based Implicit CSI Feedback in Massive MIMO
    Chen, Muhan
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    Yang, Ang
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (02) : 935 - 950
  • [35] Manifold Learning-Based CSI Feedback in Massive MIMO Systems
    Cao, Yandi
    Yin, Haifan
    He, Gaoning
    Debbah, Merouane
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 225 - 230
  • [36] Model Transmission-Based Online Updating Approach for Massive MIMO CSI Feedback
    Zhang, Boyuan
    Li, Haozhen
    Liang, Xin
    Gu, Xinyu
    Zhang, Lin
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (06) : 1609 - 1613
  • [37] A Novel Approach Using Convolutional Transformer for Massive MIMO CSI Feedback
    Bi, Xiaojun
    Li, Shuo
    Yu, Changdong
    Zhang, Yu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (05) : 1017 - 1021
  • [38] Accelerating and Compressing Deep Neural Networks for Massive MIMO CSI Feedback
    Erak, Omar
    Abou-Zeid, Hatem
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 1029 - 1035
  • [39] Binary Neural Network Aided CSI Feedback in Massive MIMO System
    Lu, Zhilin
    Wang, Jintao
    Song, Jian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (06) : 1305 - 1308
  • [40] Deep-Unfolding-Based Bit-Level CSI Feedback in Massive MIMO Systems
    Cao, Zheng
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (02) : 371 - 375