Data Augmentation for Bridging the Delay Gap in DL-Based Massive MIMO CSI Feedback

被引:1
|
作者
Zhang, Hengyu [1 ]
Lu, Zhilin [2 ]
Zhang, Xudong [1 ]
Wang, Jintao [1 ]
机构
[1] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Lab High Technol, Beijing 100084, Peoples R China
关键词
Massive MIMO; CSI feedback; deep learning; data augmentation;
D O I
10.1109/LWC.2024.3368558
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In massive multiple-input multiple-output (MIMO) systems under the frequency division duplexing (FDD) mode, the user equipment (UE) needs to feed channel state information (CSI) back to the base station (BS). Though deep learning approaches have made a hit in the CSI feedback problem, whether they can remain excellent in actual environments needs to be further investigated. In this letter, we point out that the real-time dataset in application often has the domain gap from the training dataset caused by the time delay. To bridge the gap, we propose bubble-shift (B-S) data augmentation, which attempts to offset performance degradation by changing the delay and remaining the channel information as much as possible. Moreover, random-generation (R-G) data augmentation is especially proposed for outdoor scenarios due to the complex distribution of its channels. It generalizes the characteristics of the channel matrix and alleviates the over-fitting problem. Simulation results show that the proposed data augmentation boosts the robustness of networks in both indoor and outdoor environments.
引用
收藏
页码:1315 / 1319
页数:5
相关论文
共 50 条
  • [1] Adversarial attack on DL-based massive MIMO CSI feedback
    Liu, Qing
    Guo, Jiajia
    Wen, Chao-Kai
    Jin, Shi
    JOURNAL OF COMMUNICATIONS AND NETWORKS, 2020, 22 (03) : 230 - 235
  • [2] Aligning DL Paths for Scalable CSI Feedback in FDD Massive MIMO
    Luo, Xiliang
    Cai, Penghao
    Zhang, Xiaoyu
    Shen, Cong
    Qian, Hua
    2017 13TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2017, : 587 - 592
  • [3] Codebook-Agnostic Separate Training for DL-based CSI Feedback Enhancement
    Huang, Yihang
    Ye, Chenhui
    Feng, Yijia
    2024 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC 2024, 2024,
  • [4] Joint Sparse Autoencoder Based Massive MIMO CSI Feedback
    Shan, Hangyang
    Chen, Xiaohui
    Yin, Huarui
    Chen, Li
    Wei, Guo
    IEEE COMMUNICATIONS LETTERS, 2023, 27 (04) : 1150 - 1154
  • [5] DL CSI Acquisition and Feedback in FDD Massive MIMO via Path Aligning
    Luo, Xiliang
    Zhang, Xiaoyu
    Cai, Penghao
    Shen, Cong
    Hu, Die
    Qian, Hua
    2017 NINTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2017), 2017, : 349 - 354
  • [6] Enhancing Deep Learning Performance of Massive MIMO CSI Feedback
    Ji, Sijie
    Li, Mo
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 4949 - 4954
  • [7] CSI Feedback Based on Complex Neural Network for Massive MIMO Systems
    Liu, Qingli
    Zhang, Zhenya
    Yang, Guoqiang
    Cao, Na
    Li, Mengqian
    IEEE ACCESS, 2022, 10 : 78414 - 78422
  • [8] Learning-Based Integrated CSI Feedback and Localization in Massive MIMO
    Guo, Jiajia
    Lv, Yan
    Wen, Chao-Kai
    Li, Xiao
    Jin, Shi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (10) : 14988 - 15001
  • [9] Dilated Convolution Based CSI Feedback Compression for Massive MIMO Systems
    Tang, Shunpu
    Xia, Junjuan
    Fan, Lisheng
    Lei, Xianfu
    Xu, Wei
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (10) : 11216 - 11221
  • [10] Deep Autoencoder Based CSI Feedback With Feedback Errors and Feedback Delay in FDD Massive MIMO Systems
    Jang, Youngrok
    Kong, Gyuyeol
    Jung, Minchae
    Choi, Sooyong
    Kim, Il-Min
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) : 833 - 836