Improving urban CO 2 spatial distribution modelling using multi-source data

被引:4
作者
Sun, Erchang [1 ,2 ,3 ]
Wang, Xianhua [1 ,2 ,3 ]
Ye, Hanhan [1 ,3 ]
Wu, Shichao [1 ,3 ]
Shi, Hailiang [1 ,2 ,3 ]
Li, Dacheng [1 ,3 ]
An, Yuan [1 ,2 ,3 ]
Li, Chao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Hefei Inst Phys Sci, Key Lab Gen Opt Calibrat & Characterizat Technol, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
Local urban datasets; Spatial distribution of urbanXCO2; WRF-Chem; EM27/SUN; Urban meteorology; ANTHROPOGENIC CO2; WRF; IMPACT; SIMULATIONS; UNCERTAINTY; INVENTORY; EMISSIONS; SYSTEM; GAS;
D O I
10.1016/j.uclim.2024.101902
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Urban areas contribute approximately 70% of the total anthropogenic CO 2 emissions, making them the primary focus of global carbon monitoring. However, accurate modelling of urban meteorology is challenging because of complex artificial landscapes. Reducing errors in urban meteorological simulation and improving the accuracy of modelling the spatial distribution of urban CO 2 is of great significance for the " top -down " CO 2 emissions estimation in urban areas. In this study, local urban datasets were constructed based on multiple data sources to overcome the limitation of insufficient information from a single data source. In the development of urban datasets, grid -by -grid data processing is realized, and the evaluation results show that the developed urban datasets are greatly improved compared with the default. The developed urban datasets were applied to WRF-Chem with 1 -km spatial resolution, and the simulated columnaveraged dry air mole fraction of CO 2 (XCO 2 ) was verified with the EM27/SUN observed data considering the slant observation path. The results show that urban datasets strongly influence the spatial distribution modelling of XCO 2 , depending on the state of the atmosphere near the surface, especially wind velocity. Accurate local urban datasets can effectively reduce the bias in urban XCO 2 spatial distribution modelling and improve the capability of the atmospheric CO 2 transport model in urban carbon emission estimation.
引用
收藏
页数:18
相关论文
共 45 条
[1]   Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2 [J].
Ahmadov, R. ;
Gerbig, C. ;
Kretschmer, R. ;
Koerner, S. ;
Roedenbeck, C. ;
Bousquet, P. ;
Ramonet, M. .
BIOGEOSCIENCES, 2009, 6 (05) :807-817
[2]   The evolution of city-scale GHG emissions inventory methods: A systematic review [J].
Arioli, Magdala Satt ;
D'Agosto, Marcio de Almeida ;
Amaral, Fernando Goncalves ;
Bettella Cybis, Helena Beatriz .
ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2020, 80
[3]   Impact of physics parameterizations on high-resolution weather prediction over two Chinese megacities [J].
Barlage, Michael ;
Miao, Shiguang ;
Chen, Fei .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2016, 121 (09) :4487-4498
[4]  
Berner J, 2019, A description of the advanced research WRF model version 4.3, DOI [DOI 10.5065/1DFH-6P97, 10.5065/1DFH-6P97]
[5]   WUDAPT, an efficient land use producing data tool for mesoscale models? Integration of urban LCZ in WRF over Madrid [J].
Brousse, Oscar ;
Martilli, Alberto ;
Foley, Michael ;
Mills, Gerald ;
Bechtel, Benjamin .
URBAN CLIMATE, 2016, 17 :116-134
[6]  
Chen FF, 2011, INDISPENSABLE TRUTH: HOW FUSION POWER CAN SAVE THE PLANET, P273, DOI 10.1007/978-1-4419-7820-2_8
[7]   Differential column measurements using compact solar-tracking spectrometers [J].
Chen, Jia ;
Viatte, Camille ;
Hedelius, Jacob K. ;
Jones, Taylor ;
Franklin, Jonathan E. ;
Parker, Harrison ;
Gottlieb, Elaine W. ;
Wennberg, Paul O. ;
Dubey, Manvendra K. ;
Wofsy, Steven C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (13) :8479-8498
[8]   A global map of local climate zones to support earth system modelling and urban-scale environmental science [J].
Demuzere, Matthias ;
Kittner, Jonas ;
Martilli, Alberto ;
Mills, Gerald ;
Moede, Christian ;
Stewart, Iain D. ;
van Vliet, Jasper ;
Bechtel, Benjamin .
EARTH SYSTEM SCIENCE DATA, 2022, 14 (08) :3835-3873
[9]   Global anthropogenic heat flux database with high spatial resolution [J].
Dong, Y. ;
Varquez, A. C. G. ;
Kanda, M. .
ATMOSPHERIC ENVIRONMENT, 2017, 150 :276-294
[10]   Los Angeles megacity: a high-resolution land-atmosphere modelling system for urban CO2 emissions [J].
Feng, Sha ;
Lauvaux, Thomas ;
Newman, Sally ;
Rao, Preeti ;
Ahmadov, Ravan ;
Deng, Aijun ;
Diaz-Isaac, Liza I. ;
Duren, Riley M. ;
Fischer, Marc L. ;
Gerbig, Christoph ;
Gurney, Kevin R. ;
Huang, Jianhua ;
Jeong, Seongeun ;
Li, Zhijin ;
Miller, Charles E. ;
O'Keeffe, Darragh ;
Patarasuk, Risa ;
Sander, Stanley P. ;
Song, Yang ;
Wong, Kam W. ;
Yung, Yuk L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (14) :9019-9045