Proximal Point Algorithms with Inertial Extrapolation for Quasi-convex Pseudo-monotone Equilibrium Problems

被引:2
作者
Izuchukwu, Chinedu [1 ]
Ogwo, Grace N. [2 ]
Shehu, Yekini [2 ]
机构
[1] Univ Witwatersrand, Sch Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
[2] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Peoples R China
关键词
Equilibrium problems; Proximal point algorithms; Inertial technique; Quasi-convexity; Strong quasi-convexity; CONVERGENCE; OPTIMIZATION; EXISTENCE; OPERATORS; SET;
D O I
10.1007/s11067-024-09632-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we study the proximal point algorithm with inertial extrapolation to approximate a solution to the quasi-convex pseudo-monotone equilibrium problem. In the proposed algorithm, the inertial parameter is allowed to take both negative and positive values during implementations. The possibility of the choice of negative values for the inertial parameter sheds more light on the range of values of the inertial parameter for the proximal point algorithm. Under standard assumptions, we prove that the sequence of iterates generated by the proposed algorithm converges to a solution of the equilibrium problem when the bifunction is strongly quasi-convex in its second argument. Sublinear and linear rates of convergence are also given under standard conditions. Numerical results are reported for both cases of negative and positive inertial factor of the proposed algorithm and comparison with related algorithm is discussed.
引用
收藏
页码:681 / 706
页数:26
相关论文
共 45 条
[1]   The existence of nonlinear inequalities [J].
Ansari, QH ;
Wong, NC ;
Yao, JC .
APPLIED MATHEMATICS LETTERS, 1999, 12 (05) :89-92
[2]   Convergence of a relaxed inertial proximal algorithm for maximally monotone operators [J].
Attouch, Hedy ;
Cabot, Alexandre .
MATHEMATICAL PROGRAMMING, 2020, 184 (1-2) :243-287
[3]  
Bigi G., 2019, NONLINEAR PROGRAMMIN, DOI [10.1007/978-3-030-00205-3, DOI 10.1007/978-3-030-00205-3]
[4]  
Blum E., 1994, Math. Student, V63, P123
[5]  
Brzis H., 2008, B UNION MAT ITAL, V1, P257
[6]  
Cambini A., 2009, Generalized Convexity and Optimization: Theory and Applications
[7]   Equilibrium Problems: Existence Results and Applications [J].
Cotrina, John ;
Garcia, Yboon .
SET-VALUED AND VARIATIONAL ANALYSIS, 2018, 26 (01) :159-177
[8]   Strong Convergence of Multi-Parameter Projection Methods for Variational Inequality Problems [J].
Dang Van Hieu ;
Le Dung Muu ;
Pham Kim Quy .
MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) :242-262
[9]   Halpern subgradient extragradient method extended to equilibrium problems [J].
Dang Van Hieu .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (03) :823-840
[10]   Hybrid projection methods for equilibrium problems with non-Lipschitz type bifunctions [J].
Dang Van Hieu .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) :4065-4079