Enhancing Scene Simulation for Autonomous Driving with Neural Point Rendering

被引:0
作者
Yang, Junqing [1 ]
Yan, Yuxi [1 ]
Chen, Shitao [1 ]
Zheng, Nanning [1 ]
机构
[1] Xi An Jiao Tong Univ, Natl Key Lab Human Machine Hybrid Augmented Intel, Inst Artificial Intelligence & Robot, Nation Engn Res Ctr Visual Informat & Applicat, Xian 710049, Shaanxi, Peoples R China
来源
2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC | 2023年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1109/ITSC57777.2023.10422354
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simulation plays a critical role in the development and testing of autonomous driving, which encounters significant challenges when synthesizing complex driving scenarios and realistic sensor information. Existing scene simulation methods either fail to capture intricate physical characteristics of the 3D world or struggle to extend to autonomous driving datasets with uneven distribution of viewpoints. This paper proposes a point-based neural rendering approach to reconstruct and extend scenes, thereby generating real-world test data for autonomous driving systems from various views. By utilizing collected LiDAR data and filling in sparse regions in the point cloud, accurate depth and position references are provided. Additionally, the neural descriptor is enhanced by incorporating supplementary features relying on the observation views and sampling frequency, while rendering multi-scale descriptions to capture comprehensive information about the scene's appearance. Experimental results demonstrate that our method achieves high-quality rendering for large-scale autonomous driving scenes and enables scene editing to synthesize more diverse and adaptable testing scenes.
引用
收藏
页码:4100 / 4107
页数:8
相关论文
共 35 条
[21]   AADS: Augmented autonomous driving simulation using data-driven algorithms [J].
Li, W. ;
Pan, C. W. ;
Zhang, R. ;
Ren, J. P. ;
Ma, Y. X. ;
Fang, J. ;
Yan, F. L. ;
Geng, Q. C. ;
Huang, X. Y. ;
Gong, H. J. ;
Xu, W. W. ;
Wang, G. P. ;
Manocha, D. ;
Yang, R. G. .
SCIENCE ROBOTICS, 2019, 4 (28)
[22]  
Li Zhuopeng, 2022, ARXIV220505509
[23]  
Liu Lingjie, 2020, Advances in Neural Information Processing Systems, V33, DOI DOI 10.48550/ARXIV.2007.11571
[24]  
Mildenhall B, 2022, COMMUN ACM, V65, P99, DOI 10.1145/3503250
[25]   GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields [J].
Niemeyer, Michael ;
Geiger, Andreas .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :11448-11459
[26]   KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs [J].
Reiser, Christian ;
Peng, Songyou ;
Liao, Yiyi ;
Geiger, Andreas .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :14315-14325
[27]   Urban Radiance Fields [J].
Rematas, Konstantinos ;
Liu, Andrew ;
Srinivasan, Pratul ;
Barron, Jonathan ;
Tagliasacchi, Andrea ;
Funkhouser, Thomas ;
Ferrari, Vittorio .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :12922-12932
[28]  
Rong G., 2020 IEEE 23 INT C I
[29]   ADOP: Approximate Differentiable One-Pixel Point Rendering [J].
Rueckert, Darius ;
Franke, Linus ;
Stamminger, Marc .
ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04)
[30]   Block-NeRF: Scalable Large Scene Neural View Synthesis [J].
Tancik, Matthew ;
Casser, Vincent ;
Yan, Xinchen ;
Pradhan, Sabeek ;
Mildenhall, Ben P. ;
Srinivasan, Pratul ;
Barron, Jonathan T. ;
Kretzschmar, Henrik .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :8238-8248