3D equivalent Cauchy model for serrated re-entrant auxetic honeycombs based on variational asymptotic method

被引:0
|
作者
Yujie, Zhou [1 ,2 ]
Yifeng, Zhong [1 ,2 ]
Yilin, Zhu [3 ]
Rong, Liu [1 ,2 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing, Peoples R China
[2] Chongqing Univ, Key Lab New Technol Construct Cities Mt Area, Minist Educ, Chongqing 400045, Peoples R China
[3] Southwest Petr Univ, Sch Civil Engn & Geomat, Chengdu 610500, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Cauchy model; Serrated re-entrant honeycomb; Engineering constants; Auxetic effect; Variational asymptotic method; NEGATIVE POISSONS RATIO; LARGE DEFLECTION; HOMOGENIZATION; STIFFNESS;
D O I
10.1016/j.tws.2024.111883
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The presence of serrated ligaments in the re-entrant auxetic honeycomb (abbreviated as serrated RAH) effectively enhances the stiffness while maintaining auxeticity in the re-entrant direction. To investigate its auxetic characteristics, a 3D equivalent Cauchy model (3D-ECM) was established using the variational asymptotic method. The unique aspect is that the engineering constants are obtained by homogenizing the representative unit-cell and then utilized in the 3D-ECM for global analysis. Subsequently, the resulting global responses are fed into the recovery relationships for localized field analysis. The accuracy of the 3D-ECM and the recovered local field distributions were confirmed by comparing them with the results obtained from the three-dimensional FE model (3D-FEM) and the experimental data collected from the 3D-printed specimen. The effects of the geometric parameters on the negative Poisson's ratio and engineering constants were in-depth discussed. Specifically, an optimal value of 0.5 for the re-entrant ratio and d-value (corresponding to the reentrant angle of 90 degree) yield maximum auxeticity and comparatively higher elastic moduli. In addition, the 3D-ECM greatly enhanced the computational efficiency without compromising the accuracy in predicting global behaviors and local field distributions. The unit-cell tailorability in the proposed model offers valuable guidance for optimizing the design of serrated RAHs.
引用
收藏
页数:15
相关论文
共 43 条
  • [1] Mechanical properties of 3D re-entrant auxetic cellular structures
    Wang, Xin-Tao
    Wang, Bing
    Li, Xiao-Wen
    Ma, Li
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 131 : 396 - 407
  • [2] Effect of damage evolution on the auxetic behavior of 2D and 3D re-entrant type geometries
    Srivastava, Chetna
    Mahesh, Vinyas
    Guruprasad, P. J.
    Petrinic, Nik
    Scarpa, Fabrizio
    Harursampath, Dineshkumar
    Ponnusami, Sathiskumar A.
    MECHANICS OF MATERIALS, 2024, 193
  • [3] Mechanical properties of 3D re-entrant honeycomb auxetic structures realized via additive manufacturing
    Yang, Li
    Harrysson, Ola
    West, Harvey
    Cormier, Denis
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2015, 69-70 : 475 - 490
  • [4] A simple 3D re-entrant auxetic metamaterial with enhanced energy absorption
    Teng, Xing Chi
    Ren, Xin
    Zhang, Yi
    Jiang, Wei
    Pan, Yang
    Zhang, Xue Gang
    Zhang, Xiang Yu
    Xie, Yi Min
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 229
  • [5] Experimental and numerical analysis of a novel 3D re-entrant auxetic structure
    Lotfi, Majid
    Masoumi, Abolfazl
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2023, 237 (14) : 3478 - 3493
  • [6] Energy Absorption Characteristics of Fused Deposition Modeling 3D Printed Auxetic Re-entrant Structures: A Review
    Choudhry, Niranjan Kumar
    Panda, Biranchi
    Dixit, Uday Shanker
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2023, 32 (20) : 8981 - 8999
  • [7] 3D Printed Auxetic Mechanical Metamaterial with Chiral Cells and Re-entrant Cores
    Jiang, Yunyao
    Li, Yaning
    SCIENTIFIC REPORTS, 2018, 8
  • [8] Additive manufactured 3D re-entrant auxetic structures for enhanced impact resistance
    Nam, Ryan
    Nam, Daniel
    Naguib, Hani E.
    SMART MATERIALS AND STRUCTURES, 2024, 33 (12)
  • [9] 3D printed hierarchical re-entrant honeycombs: Enhanced mechanical properties and the underlying deformation mechanisms
    Zhan, Chi
    Li, Mingzhe
    McCoy, Robert
    Zhao, Linda
    Lu, Weiyi
    COMPOSITE STRUCTURES, 2022, 290
  • [10] Low velocity impact performance of 3D auxetic composites embedded with re-entrant triangle inclusions
    Zhang, Minglonghai
    Ho, Mabel Mei Po
    Hu, Hong
    POLYMER COMPOSITES, 2023, 44 (08) : 5070 - 5086