Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks

被引:7
作者
Orsi, Enrico [1 ]
Hernandez-Sancho, Javier [1 ]
Remeijer, Maaike S. [2 ,3 ]
Kruis, Aleksander J. [4 ]
Volke, Daniel C. [1 ]
Claassens, Nico J. [5 ]
Paul, Caroline E. [6 ]
Bruggeman, Frank J. [2 ,3 ]
Weusthuis, Ruud A. [7 ]
Nikel, Pablo, I [1 ]
机构
[1] Tech Univ Denmark, Novo Nord Fdn Ctr Biosustainabil, Kongens Lyngby, Denmark
[2] Vrije Univ, Amsterdam Inst Life & Environm, Amsterdam, Netherlands
[3] Vrije Univ, Inst Mol & Life Sci, Amsterdam, Netherlands
[4] Acies Bio Doo, Ljubljana, Slovenia
[5] Wageningen Univ & Res, Microbiol, Wageningen, Netherlands
[6] Delft Univ Technol, Dept Biotechnol, Delft, Netherlands
[7] Wageningen Univ & Res, Bioproc Engn, Wageningen, Netherlands
基金
欧盟地平线“2020”;
关键词
ESCHERICHIA-COLI; METHANOL DEHYDROGENASE; METABOLISM; EVOLUTION; ENZYMES; BIOLOGY;
D O I
10.1016/j.copbio.2024.103195
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
引用
收藏
页数:13
相关论文
共 95 条
[71]   Creating new-to-nature carbon fixation: A guide [J].
Schulz-Mirbach, Helena ;
Dronsella, Beau ;
He, Hai ;
Erb, Tobias J. .
METABOLIC ENGINEERING, 2024, 82 :12-28
[72]   Prospects for carbon-negative biomanufacturing [J].
Scown, Corinne D. .
TRENDS IN BIOTECHNOLOGY, 2022, 40 (12) :1415-1424
[73]   NADPH-generating systems in bacteria and archaea [J].
Spaans, Sebastiaan K. ;
Weusthuis, Ruud A. ;
van der Oost, John ;
Kengen, Serve W. M. .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[74]   Coupling electrochemical CO2 reduction to microbial product generation - identification of the gaps and opportunities [J].
Stoekl, M. ;
Claassens, N. J. ;
Lindner, S. N. ;
Klemm, E. ;
Holtmann, D. .
CURRENT OPINION IN BIOTECHNOLOGY, 2022, 74 :154-163
[75]   Core and auxiliary functions of one-carbon metabolism in Pseudomonas putida exposed by a systems-level analysis of transcriptional and physiological responses [J].
Turlin, Justine ;
Puiggene, Oscar ;
Donati, Stefano ;
Wirth, Nicolas T. ;
Nikel, Pablo I. .
MSYSTEMS, 2023, 8 (03) :1-24
[76]   Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation [J].
Turlin, Justine ;
Dronsella, Beau ;
De Maria, Alberto ;
Lindner, Steffen N. ;
Nikel, Pablo I. .
METABOLIC ENGINEERING, 2022, 74 :191-205
[77]   Engineering Candida boidinii formate dehydrogenase for activity with the non-canonical cofactor 3′-NADP(H) [J].
Vainstein, Salomon ;
Banta, Scott .
PROTEIN ENGINEERING DESIGN & SELECTION, 2023, 36
[78]   From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals [J].
Van Dien, Stephen .
CURRENT OPINION IN BIOTECHNOLOGY, 2013, 24 (06) :1061-1068
[79]   Emergent CRISPR-Cas-based technologies for engineering non-model bacteria [J].
Volke, Daniel C. ;
Orsi, Enrico ;
Nikel, Pablo I. .
CURRENT OPINION IN MICROBIOLOGY, 2023, 75
[80]   Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing [J].
Volke, Daniel C. ;
Martino, Roman A. ;
Kozaeva, Ekaterina ;
Smania, Andrea M. ;
Nikel, Pablo I. .
NATURE COMMUNICATIONS, 2022, 13 (01)