Harnessing noncanonical redox cofactors to advance synthetic assimilation of one-carbon feedstocks

被引:7
作者
Orsi, Enrico [1 ]
Hernandez-Sancho, Javier [1 ]
Remeijer, Maaike S. [2 ,3 ]
Kruis, Aleksander J. [4 ]
Volke, Daniel C. [1 ]
Claassens, Nico J. [5 ]
Paul, Caroline E. [6 ]
Bruggeman, Frank J. [2 ,3 ]
Weusthuis, Ruud A. [7 ]
Nikel, Pablo, I [1 ]
机构
[1] Tech Univ Denmark, Novo Nord Fdn Ctr Biosustainabil, Kongens Lyngby, Denmark
[2] Vrije Univ, Amsterdam Inst Life & Environm, Amsterdam, Netherlands
[3] Vrije Univ, Inst Mol & Life Sci, Amsterdam, Netherlands
[4] Acies Bio Doo, Ljubljana, Slovenia
[5] Wageningen Univ & Res, Microbiol, Wageningen, Netherlands
[6] Delft Univ Technol, Dept Biotechnol, Delft, Netherlands
[7] Wageningen Univ & Res, Bioproc Engn, Wageningen, Netherlands
基金
欧盟地平线“2020”;
关键词
ESCHERICHIA-COLI; METHANOL DEHYDROGENASE; METABOLISM; EVOLUTION; ENZYMES; BIOLOGY;
D O I
10.1016/j.copbio.2024.103195
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
One-carbon (C1) feedstocks, such as carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), can be obtained either through stepwise electrochemical reduction of CO2 with renewable electricity or via processing of organic side streams. These C1 substrates are increasingly investigated in biotechnology as they can contribute to a circular carbon economy. In recent years, noncanonical redox cofactors (NCRCs) emerged as a tool to generate synthetic electron circuits in cell factories to maximize electron transfer within a pathway of interest. Here, we argue that expanding the use of NCRCs in the context of C1-driven bioprocesses will boost product yields and facilitate challenging redox transactions that are typically out of the scope of natural cofactors due to inherent thermodynamic constraints.
引用
收藏
页数:13
相关论文
共 95 条
[1]  
ARFMAN N, 1991, J BIOL CHEM, V266, P3955
[2]  
Aspacio D, 2023, bioRxiv, DOI [10.1101/2023.1108.1129.555398, DOI 10.1101/2023.1108.1129.555398]
[3]   The potential of CO2-based production cycles in biotechnology to fight the climate crisis [J].
Bachleitner, Simone ;
Ata, Oezge ;
Mattanovich, Diethard .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]   eQuilibrator 3.0: a database solution for thermodynamic constant estimation [J].
Beber, Moritz E. ;
Gollub, Mattia G. ;
Mozaffari, Dana ;
Shebek, Kevin M. ;
Flamholz, Avi, I ;
Milo, Ron ;
Noor, Elad .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D603-D609
[5]   Role of Dissimilative Pathway of Komagataella phaffii (Pichia pastoris): Formaldehyde Toxicity and Energy Metabolism [J].
Berrios, Julio ;
Theron, Chrispian W. ;
Steels, Sebastien ;
Ponce, Belen ;
Velastegui, Edgar ;
Bustos, Cristina ;
Altamirano, Claudia ;
Fickers, Patrick .
MICROORGANISMS, 2022, 10 (07)
[6]   Enzymatic Conversion of CO2: From Natural to Artificial Utilization [J].
Bierbaumer, Sarah ;
Nattermann, Maren ;
Schulz, Luca ;
Zschoche, Reinhard ;
Erb, Tobias J. ;
Winkler, Christoph K. ;
Tinzl, Matthias ;
Glueck, Silvia M. .
CHEMICAL REVIEWS, 2023, 123 (09) :5702-5754
[7]   Design, construction, and application of noncanonical redox cofactor infrastructures [J].
Black, William B. ;
Perea, Sean ;
Li, Han .
CURRENT OPINION IN BIOTECHNOLOGY, 2023, 84
[8]   Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis [J].
Black, William B. ;
Zhang, Linyue ;
Mak, Wai Shun ;
Maxel, Sarah ;
Cui, Youtian ;
King, Edward ;
Fong, Bonnie ;
Martinez, Alicia Sanchez ;
Siegel, Justin B. ;
Li, Han .
NATURE CHEMICAL BIOLOGY, 2020, 16 (01) :87-+
[9]   Formate dehydrogenases for CO 2 utilization [J].
Calzadiaz-Ramirez, Liliana ;
Meyer, Anne S. .
CURRENT OPINION IN BIOTECHNOLOGY, 2022, 73 :95-100
[10]   Converting Escherichia coli to a Synthetic Methylotroph Growing Solely on Methanol [J].
Chen, Frederic Y-H ;
Jung, Hsin-Wei ;
Tsuei, Chao-Yin ;
Liao, James C. .
CELL, 2020, 182 (04) :933-+