One-Shot Learning of Surrogates in PDE-Constrained Optimization under Uncertainty

被引:0
作者
Guth, Philipp A. [1 ]
Schillings, Claudia [2 ]
Weissmann, Simon [3 ]
机构
[1] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, Altenbergerstr 69, A-4040 Linz, Austria
[2] Free Univ Berlin, Fachbereich Math & Informat, Arnimallee 6, D-14195 Berlin, Germany
[3] Univ Mannheim, Inst Math, D-68138 Mannheim, Germany
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2024年 / 12卷 / 02期
关键词
surrogate learning; optimization under uncertainty; uncertainty quantification; stochastic gradient descent; PDE-constrained risk minimization; APPROXIMATION; REDUCTION; NETWORKS; SYSTEMS;
D O I
10.1137/23M1553170
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a general framework for machine learning based optimization under uncertainty. Our approach replaces the complex forward model by a surrogate, which is learned simultaneously in a one-shot sense when solving the optimal control problem. Our approach relies on a reformulation of the problem as a penalized empirical risk minimization problem for which we provide a consistency analysis in terms of large data and increasing penalty parameter. To solve the resulting problem, we suggest a stochastic gradient method with adaptive control of the penalty parameter and prove convergence under suitable assumptions on the surrogate model. Numerical experiments illustrate the results for linear and nonlinear surrogate models.
引用
收藏
页码:614 / 645
页数:32
相关论文
共 50 条
  • [21] A note on multigrid preconditioning for fractional PDE-constrained optimization problems
    Antil, Harbir
    Draganescu, Andrei
    Green, Kiefer
    RESULTS IN APPLIED MATHEMATICS, 2021, 9 (09):
  • [22] Lossy compression for PDE-constrained optimization: adaptive error control
    Goetschel, Sebastian
    Weiser, Martin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 62 (01) : 131 - 155
  • [23] Progressive construction of a parametric reduced-order model for PDE-constrained optimization
    Zahr, Matthew J.
    Farhat, Charbel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (05) : 1111 - 1135
  • [24] THE ADMM-PINNS ALGORITHMIC FRAMEWORK FOR NONSMOOTH PDE-CONSTRAINED OPTIMIZATION: A DEEP LEARNING APPROACH
    Song, Yongcun
    Yuan, Xiaoming
    Yue, Hangrui
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (06) : C659 - C687
  • [25] Some applications of weighted norm inequalities to the error analysis of PDE-constrained optimization problems
    Antil, Harbir
    Otarola, Enrique
    Salgado, Abner J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (02) : 852 - 883
  • [26] EFFICIENT PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEM WITH A MULTILEVEL SEQUENTIALLY SEMISEPARABLE MATRIX STRUCTURE
    Qiu, Yue
    van Gijzen, Martin B.
    van Wingerden, Jan-Willem
    Verhaegen, Michel
    Vuik, Cornelis
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 367 - 400
  • [27] ON DISCRETE SHAPE GRADIENTS OF BOUNDARY TYPE FOR PDE-CONSTRAINED SHAPE OPTIMIZATION
    Gong, Wei
    Zhu, Shengfeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1510 - 1541
  • [28] Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization
    Kouri, Drew P.
    Surowiecz, Thomas M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (03): : 1321 - 1322
  • [29] Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization
    Kouri, D. P.
    Surowiec, T. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02): : 787 - 815
  • [30] An efficient duality-based approach for PDE-constrained sparse optimization
    Song, Xiaoliang
    Chen, Bo
    Yu, Bo
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2018, 69 (02) : 461 - 500