Universal Machine Learning Kohn-Sham Hamiltonian for Materials

被引:19
作者
Zhong, Yang [1 ,2 ,3 ]
Yu, Hongyu [1 ,2 ,3 ]
Yang, Jihui [1 ,2 ,3 ]
Guo, Xingyu [1 ,2 ,3 ]
Xiang, Hongjun [1 ,2 ,3 ]
Gong, Xingao [1 ,2 ,3 ]
机构
[1] Fudan Univ, Inst Computat Phys Sci, State Key Lab Surface Phys, Key Lab Computat Phys Sci,Minist Educ, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[3] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
DENSITY-FUNCTIONAL THEORY; METAL-ORGANIC FRAMEWORKS; ELECTRONIC-STRUCTURE; DESIGN;
D O I
10.1088/0256-307X/41/7/077103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn-Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT training data to explore each new system and the complexity of establishing accurate machine learning models for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moir & eacute; twisted bilayer heterostructure, and metal-organic frameworks. Moreover, we utilize the universal model to conduct high-throughput calculations of electronic structures for crystals in GNoME datasets, identifying 3940 crystals with direct band gaps and 5109 crystals with flat bands. By offering a reliable efficient framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields, such as easily providing a huge data set of electronic structures and also making the materials design across the whole periodic table possible.
引用
收藏
页数:10
相关论文
共 66 条
[21]  
Jain A., 2018, MAT PROJECT ACCELERA, P1, DOI [10.1007/978-3-319-42913-7_60-1, DOI 10.1007/978-3-319-42913-7_60-1]
[22]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[23]   Density functional theory: Its origins, rise to prominence, and future [J].
Jones, R. O. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (03) :897-923
[24]   A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians [J].
Li, Haichen ;
Collins, Christopher ;
Tanha, Matteus ;
Gordon, Geoffrey J. ;
Yaron, David J. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (11) :5764-5776
[25]   Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation [J].
Li, He ;
Wang, Zun ;
Zou, Nianlong ;
Ye, Meng ;
Xu, Runzhang ;
Gong, Xiaoxun ;
Duan, Wenhui ;
Xu, Yong .
NATURE COMPUTATIONAL SCIENCE, 2022, 2 (06) :367-377
[26]   A review on the use of DFT for the prediction of the properties of nanomaterials [J].
Makkar, Priyanka ;
Ghosh, Narendra Nath .
RSC ADVANCES, 2021, 11 (45) :27897-27924
[27]   Electronic Structure Modeling of Metal-Organic Frameworks [J].
Mancuso, Jenna L. ;
Mroz, Austin M. ;
Le, Khoa N. ;
Hendon, Christopher H. .
CHEMICAL REVIEWS, 2020, 120 (16) :8641-8715
[28]   Electronic-structure methods for materials design [J].
Marzari, Nicola ;
Ferretti, Andrea ;
Wolverton, Chris .
NATURE MATERIALS, 2021, 20 (06) :736-749
[29]   Predicting electronic structure calculation results [J].
Mccardle, Kaitlin .
NATURE COMPUTATIONAL SCIENCE, 2023, 3 (11) :915-915
[30]   Scaling deep learning for materials discovery [J].
Merchant, Amil ;
Batzner, Simon ;
Schoenholz, Samuel S. ;
Aykol, Muratahan ;
Cheon, Gowoon ;
Cubuk, Ekin Dogus .
NATURE, 2023, 624 (7990) :80-+