Universal Machine Learning Kohn-Sham Hamiltonian for Materials

被引:19
作者
Zhong, Yang [1 ,2 ,3 ]
Yu, Hongyu [1 ,2 ,3 ]
Yang, Jihui [1 ,2 ,3 ]
Guo, Xingyu [1 ,2 ,3 ]
Xiang, Hongjun [1 ,2 ,3 ]
Gong, Xingao [1 ,2 ,3 ]
机构
[1] Fudan Univ, Inst Computat Phys Sci, State Key Lab Surface Phys, Key Lab Computat Phys Sci,Minist Educ, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[3] Shanghai Qi Zhi Inst, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
DENSITY-FUNCTIONAL THEORY; METAL-ORGANIC FRAMEWORKS; ELECTRONIC-STRUCTURE; DESIGN;
D O I
10.1088/0256-307X/41/7/077103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn-Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT training data to explore each new system and the complexity of establishing accurate machine learning models for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moir & eacute; twisted bilayer heterostructure, and metal-organic frameworks. Moreover, we utilize the universal model to conduct high-throughput calculations of electronic structures for crystals in GNoME datasets, identifying 3940 crystals with direct band gaps and 5109 crystals with flat bands. By offering a reliable efficient framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields, such as easily providing a huge data set of electronic structures and also making the materials design across the whole periodic table possible.
引用
收藏
页数:10
相关论文
共 66 条
[1]  
Batatia I, 2023, Arxiv, DOI [arXiv:2401.00096, DOI 10.48550/ARXIV.2401.00096]
[2]   Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices [J].
Baumann, Avery E. ;
Burns, David A. ;
Liu, Bingqian ;
Thoi, V. Sara .
COMMUNICATIONS CHEMISTRY, 2019, 2 (1)
[3]   Atom-centered symmetry functions for constructing high-dimensional neural network potentials [J].
Behler, Joerg .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
[4]   Deep learning approach to genome of two-dimensional materials with flat electronic bands [J].
Bhattacharya, A. ;
Timokhin, I. ;
Chatterjee, R. ;
Yang, Q. ;
Mishchenko, A. .
NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
[5]   A universal graph deep learning interatomic potential for the periodic table [J].
Chen, Chi ;
Ong, Shyue Ping .
NATURE COMPUTATIONAL SCIENCE, 2022, 2 (11) :718-+
[6]   Evolution of the electronic structure in open-shell donor-acceptor organic semiconductors [J].
Chen, Zhongxin ;
Li, Wenqiang ;
Sabuj, Md Abdus ;
Li, Yuan ;
Zhu, Weiya ;
Zeng, Miao ;
Sarap, Chandra S. ;
Huda, Md Masrul ;
Qiao, Xianfeng ;
Peng, Xiaobin ;
Ma, Dongge ;
Ma, Yuguang ;
Rai, Neeraj ;
Huang, Fei .
NATURE COMMUNICATIONS, 2021, 12 (01)
[7]   Machine learning of accurate energy-conserving molecular force fields [J].
Chmiela, Stefan ;
Tkatchenko, Alexandre ;
Sauceda, Huziel E. ;
Poltavsky, Igor ;
Schuett, Kristof T. ;
Mueller, Klaus-Robert .
SCIENCE ADVANCES, 2017, 3 (05)
[8]   Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal-Organic Framework Database: CoRE MOF 2019 [J].
Chung, Yongchul G. ;
Haldoupis, Emmanuel ;
Bucior, Benjamin J. ;
Haranczyk, Maciej ;
Lee, Seulchan ;
Zhang, Hongda ;
Vogiatzis, Konstantinos D. ;
Milisavljevic, Marija ;
Ling, Sanliang ;
Camp, Jeffrey S. ;
Slater, Ben ;
Siepmann, J. Ilja ;
Sholl, David S. ;
Snurr, Randall Q. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2019, 64 (12) :5985-5998
[9]   Computation-Ready, Experimental Metal-Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals [J].
Chung, Yongchul G. ;
Camp, Jeffrey ;
Haranczyk, Maciej ;
Sikora, Benjamin J. ;
Bury, Wojciech ;
Krungleviciute, Vaiva ;
Yildirim, Taner ;
Farha, Omar K. ;
Sholl, David S. ;
Snurr, Randall Q. .
CHEMISTRY OF MATERIALS, 2014, 26 (21) :6185-6192
[10]   CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling [J].
Deng, Bowen ;
Zhong, Peichen ;
Jun, KyuJung ;
Riebesell, Janosh ;
Han, Kevin ;
Bartel, Christopher J. ;
Ceder, Gerbrand .
NATURE MACHINE INTELLIGENCE, 2023, 5 (09) :1031-1041