Knowledge Transfer in Multi-Task Deep Reinforcement Learning for Continuous Control

被引:0
|
作者
Xu, Zhiyuan [1 ]
Wu, Kun [1 ]
Che, Zhengping [2 ]
Tang, Jian [1 ,2 ]
Ye, Jieping [2 ]
机构
[1] Syracuse Univ, Dept Elect Engn Comp Sci, Syracuse, NY 13244 USA
[2] Didi Chuxing, DiDi Labs, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While Deep Reinforcement Learning (DRL) has emerged as a promising approach to many complex tasks, it remains challenging to train a single DRL agent that is capable of undertaking multiple different continuous control tasks. In this paper, we present a Knowledge Transfer based Multi-task Deep Reinforcement Learning framework (KTM-DRL) for continuous control, which enables a single DRL agent to achieve expert-level performance in multiple different tasks by learning from task-specific teachers. In KTM-DRL, the multi-task agent first leverages an offline knowledge transfer algorithm designed particularly for the actor-critic architecture to quickly learn a control policy from the experience of task-specific teachers, and then it employs an online learning algorithm to further improve itself by learning from new online transition samples under the guidance of those teachers. We perform a comprehensive empirical study with two commonly-used benchmarks in the MuJoCo continuous control task suite. The experimental results well justify the effectiveness of KTM-DRL and its knowledge transfer and online learning algorithms, as well as its superiority over the state-of-the-art by a large margin.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Sparse Multi-Task Reinforcement Learning
    Calandriello, Daniele
    Lazaric, Alessandro
    Restelli, Marcello
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [22] Sparse multi-task reinforcement learning
    Calandriello, Daniele
    Lazaric, Alessandro
    Restelli, Marcello
    INTELLIGENZA ARTIFICIALE, 2015, 9 (01) : 5 - 20
  • [23] Multi-task Learning with Modular Reinforcement Learning
    Xue, Jianyong
    Alexandre, Frederic
    FROM ANIMALS TO ANIMATS 16, 2022, 13499 : 127 - 138
  • [24] A Hybrid Multi-Task Learning Approach for Optimizing Deep Reinforcement Learning Agents
    Varghese, Nelson Vithayathil
    Mahmoud, Qusay H.
    IEEE ACCESS, 2021, 9 : 44681 - 44703
  • [25] Multi-Task Deep Reinforcement Learning for Terahertz NOMA Resource Allocation With Hybrid Discrete and Continuous Actions
    Hu, Zhifeng
    Han, Chong
    Deng, Yansha
    Wang, Xudong
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (08) : 11647 - 11663
  • [26] Study on deep reinforcement learning for multi-task scheduling in cloud manufacturing
    Xiao, Jiuhong
    Cai, Yishuai
    Chen, Yong
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2025,
  • [27] Multi-Task Learning with Knowledge Transfer for Facial Attribute Classification
    Fanhe, Xiaohui
    Guo, Jie
    Huang, Zheng
    Qiu, Weidong
    Zhang, Yuele
    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2019, : 877 - 882
  • [28] Congestion Control in SDN-Based Networks via Multi-Task Deep Reinforcement Learning
    Lei, Kai
    Liang, Yuzhi
    Li, Wei
    IEEE NETWORK, 2020, 34 (04): : 28 - 34
  • [29] Multi-Task Curriculum Transfer Deep Learning of Clothing Attributes
    Dong, Qi
    Gong, Shaogang
    Zhu, Xiatian
    2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), 2017, : 520 - 529
  • [30] Decision making on robot with multi-task using deep reinforcement learning for each task
    Shimoguchi, Yuya
    Kurashige, Kentarou
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 3460 - 3465