Knowledge Transfer in Multi-Task Deep Reinforcement Learning for Continuous Control

被引:0
|
作者
Xu, Zhiyuan [1 ]
Wu, Kun [1 ]
Che, Zhengping [2 ]
Tang, Jian [1 ,2 ]
Ye, Jieping [2 ]
机构
[1] Syracuse Univ, Dept Elect Engn Comp Sci, Syracuse, NY 13244 USA
[2] Didi Chuxing, DiDi Labs, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While Deep Reinforcement Learning (DRL) has emerged as a promising approach to many complex tasks, it remains challenging to train a single DRL agent that is capable of undertaking multiple different continuous control tasks. In this paper, we present a Knowledge Transfer based Multi-task Deep Reinforcement Learning framework (KTM-DRL) for continuous control, which enables a single DRL agent to achieve expert-level performance in multiple different tasks by learning from task-specific teachers. In KTM-DRL, the multi-task agent first leverages an offline knowledge transfer algorithm designed particularly for the actor-critic architecture to quickly learn a control policy from the experience of task-specific teachers, and then it employs an online learning algorithm to further improve itself by learning from new online transition samples under the guidance of those teachers. We perform a comprehensive empirical study with two commonly-used benchmarks in the MuJoCo continuous control task suite. The experimental results well justify the effectiveness of KTM-DRL and its knowledge transfer and online learning algorithms, as well as its superiority over the state-of-the-art by a large margin.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Multi-Task Deep Reinforcement Learning for Continuous Action Control
    Yang, Zhaoyang
    Merrick, Kathryn
    Abbass, Hussein
    Jin, Lianwen
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3301 - 3307
  • [2] A Survey of Multi-Task Deep Reinforcement Learning
    Vithayathil Varghese, Nelson
    Mahmoud, Qusay H.
    ELECTRONICS, 2020, 9 (09) : 1 - 21
  • [3] Multi-Task Deep Reinforcement Learning with PopArt
    Hessel, Matteo
    Soyer, Hubert
    Espeholt, Lasse
    Czarnecki, Wojciech
    Schmitt, Simon
    van Hasselt, Hado
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 3796 - 3803
  • [4] Attentive Multi-task Deep Reinforcement Learning
    Bram, Timo
    Brunner, Gino
    Richter, Oliver
    Wattenhofer, Roger
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 134 - 149
  • [5] Optimization of Deep Reinforcement Learning with Hybrid Multi-Task Learning
    Varghese, Nelson Vithayathil
    Mahmoud, Qusay H.
    2021 15TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON 2021), 2021,
  • [6] Episodic memory transfer for multi-task reinforcement learning
    Sorokin, Artyom Y.
    Burtsev, Mikhail S.
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, 2018, 26 : 91 - 95
  • [7] Multi-task Deep Reinforcement Learning for Scalable Parallel Task Scheduling
    Zhang, Lingxin
    Qi, Qi
    Wang, Jingyu
    Sun, Haifeng
    Liao, Jianxin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2992 - 3001
  • [8] Multi-task deep reinforcement learning for intelligent multi-zone residential HVAC control
    Du, Yan
    Li, Fangxing
    Munk, Jeffrey
    Kurte, Kuldeep
    Kotevska, Olivera
    Amasyali, Kadir
    Zandi, Helia
    ELECTRIC POWER SYSTEMS RESEARCH, 2021, 192
  • [9] Multi-task Deep Reinforcement Learning for IoT Service Selection
    Matsuoka, Hiroki
    Moustafa, Ahmed
    ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3, 2022, : 548 - 554
  • [10] Multi-task Deep Reinforcement Learning: a Combination of Rainbow and DisTraL
    Andalibi, Milad
    Setoodeh, Peyman
    Mansourieh, Ali
    Asemani, Mohammad Hassan
    2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,