Multifunctional Buffer Layer Engineering for Efficient and Stable Wide-Bandgap Perovskite and Perovskite/Silicon Tandem Solar Cells

被引:11
|
作者
Ji, Xiaofei [1 ]
Ding, Yian [3 ]
Bi, Leyu [2 ]
Yang, Xin [4 ]
Wang, Jiarong [2 ]
Wang, Xiaoting [1 ]
Liu, Yuanzhong [1 ,3 ]
Yan, Yiran [1 ,3 ]
Zhu, Xiangrong [4 ]
Huang, Jin [5 ]
Yang, Liyou [5 ]
Fu, Qiang [2 ]
Jen, Alex K. -Y. [2 ]
Lu, Linfeng [1 ,3 ]
机构
[1] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
[2] City Univ Hong Kong, Hong Kong Inst Clean Energy, Dept Mat Sci & Engn, Dept Chem,Kowloon, Hong Kong 999077, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Shanghai Polytech Univ, Sch Energy & Mat, 2360 Jinhai Rd, Shanghai 201209, Peoples R China
[5] JINNENG Clean Energy Technol Ltd, Jinzhong 030300, Shanxi, Peoples R China
关键词
wide-band gap perovskite; tandem solar cells; atomic layer deposition; phase separation; defect passivation; HALIDE SEGREGATION; PHASE SEGREGATION; PERFORMANCE; STABILITY;
D O I
10.1002/anie.202407766
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inverted perovskite solar cells (PSCs) are preferred for tandem applications due to their superior compatibility with diverse bottom solar cells. However, the solution processing and low formation energy of perovskites inevitably lead to numerous defects at both the bulk and interfaces. We report a facile and effective strategy for precisely modulating the perovskite by incorporating AlOx deposited by atomic layer deposition (ALD) on the top interface. We find that Al3+ can not only infiltrate the bulk phase and interact with halide ions to suppress ion migration and phase separation but also regulate the arrangement of energy levels and passivate defects on the perovskite surface and grain boundaries. Additionally, ALD-AlOx exhibits an encapsulation effect through a dense interlayer. Consequently, the ALD-AlOx treatment can significantly improve the power conversion efficiency (PCE) to 21.80 % for 1.66 electron volt (eV) PSCs. A monolithic perovskite-silicon TSCs using AlOx-modified perovskite achieved a PCE of 28.5 % with excellent photothermal stability. More importantly, the resulting 1.55 eV PSC and module achieved a PCE of 25.08 % (0.04 cm2) and 21.01 % (aperture area of 15.5 cm2), respectively. Our study provides an effective way to efficient and stable wide-band gap perovskite for perovskite-silicon TSCs and paves the way for large-area inverted PSCs. A facile strategy incorporating AlOx deposited by controlled growth was developed to modulate the perovskite surface. The infiltrated Al3+ can suppress ion migration and phase separation, regulate the arrangement of energy levels, and passivate defects on the perovskite surface and grain boundaries. A monolithic perovskite-silicon tandem solar cell achieved a PCE of 28.50 % with excellent photothermal stability. image
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency
    Yao, Yuxin
    Hang, Pengjie
    Li, Biao
    Hu, Zechen
    Kan, Chenxia
    Xie, Jiangsheng
    Wang, Ying
    Zhang, Yiqiang
    Yang, Deren
    Yu, Xuegong
    SMALL, 2022, 18 (38)
  • [42] Multifunctional and multi-site interfacial buffer layer for efficient and stable perovskite solar cells
    Su, Pengyu
    Bi, Huan
    Ran, Du
    Liu, Li
    Hou, Wenjing
    Wang, Guangzhao
    Shi, Wenbing
    CHEMICAL ENGINEERING JOURNAL, 2023, 472
  • [43] Efficient and Stable Inverted Wide-Bandgap Perovskite Solar Cells and Modules Enabled by Hybrid Evaporation-Solution Method
    Afshord, Amir Zarean
    Uzuner, Bahri Eren
    Soltanpoor, Wiria
    Sedani, Salar H.
    Aernouts, Tom
    Gunbas, Gorkem
    Kuang, Yinghuan
    Yerci, Selcuk
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (31)
  • [44] CsPbCl3-Cluster-Widened Bandgap and Inhibited Phase Segregation in a Wide-Bandgap Perovskite and its Application to NiOx-Based Perovskite/Silicon Tandem Solar Cells
    Li, Renjie
    Chen, Bingbing
    Ren, Ningyu
    Wang, Pengyang
    Shi, Biao
    Xu, Qiaojing
    Zhao, Hua
    Han, Wei
    Zhu, Zhao
    Liu, Jingjing
    Huang, Qian
    Zhang, Dekun
    Zhao, Ying
    Zhang, Xiaodan
    ADVANCED MATERIALS, 2022, 34 (27)
  • [45] Ultrafast hole transfer mediated by a conjugated self-assembled molecule enables efficient and stable wide-bandgap perovskite solar cells
    Guo, Yuxiao
    Guo, Shiyan
    Wu, Tai
    Zhan, Shaoqi
    Wei, Changting
    Luo, Xin
    Huang, Jinhai
    Su, Jianhua
    Hua, Yong
    Xu, Bo
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [46] Efficient wide-bandgap perovskite solar cells enabled by doping a bromine-rich molecule
    He, Rui
    Chen, Tingting
    Xuan, Zhipeng
    Guo, Tianzhen
    Luo, Jincheng
    Jiang, Yiting
    Wang, Wenwu
    Zhang, Jingquan
    Hao, Xia
    Wu, Lili
    Wang, Ye
    Constantinou, Iordania
    Ren, Shengqiang
    Zhao, Dewei
    NANOPHOTONICS, 2021, 10 (08) : 2059 - 2068
  • [47] Recent Advances in Wide-Bandgap Organic-Inorganic Halide Perovskite Solar Cells and Tandem Application
    Nie, Ting
    Fang, Zhimin
    Ren, Xiaodong
    Duan, Yuwei
    Liu, Shengzhong
    NANO-MICRO LETTERS, 2023, 15 (01)
  • [48] Efficient and Stable Wide-Bandgap Perovskite Solar Cells Derived from a Thermodynamic Phase-Pure Intermediate
    Yu, Fan
    Liu, Jian
    Huang, Jiahao
    Xu, Pan
    Li, Cheng-Hui
    Zheng, You-Xuan
    Tan, Hairen
    Zuo, Jing-Lin
    SOLAR RRL, 2022, 6 (02)
  • [49] Crystallization Regulation and Defect Passivation for Efficient Inverted Wide-Bandgap Perovskite Solar Cells with over 21% Efficiency
    Su, Gangfeng
    Yu, Runnan
    Dong, Yiman
    He, Zhangwei
    Zhang, Yuling
    Wang, Ruyue
    Dang, Qi
    Sha, Shihao
    Lv, Qianglong
    Xu, Zhiyang
    Liu, Zhuoxu
    Li, Minghua
    Tan, Zhan'ao
    ADVANCED ENERGY MATERIALS, 2024, 14 (04)
  • [50] Efficient and Stable Wide-Bandgap Methylammonium-Free Perovskite Solar Cells by Simultaneous Passivation and Cleaning with Diamine
    Zhang, Luozheng
    Zhang, Yi
    Du, Kaihuai
    Gao, Gaomeijie
    Wang, Aili
    Li, Bairu
    Fang, Zhimin
    Luo, Long
    Yuan, Ningyi
    Ding, Jianning
    SOLAR RRL, 2024, 8 (23):