机构:
Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
Ghosh, Trinetri
[1
]
Ma, Yanyuan
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Stat, University Pk, PA 16802 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
Ma, Yanyuan
[2
]
Zhu, Wensheng
论文数: 0引用数: 0
h-index: 0
机构:
Northeast Normal Univ, Sch Math & Stat, Changchun, Jilin, Peoples R ChinaUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
Zhu, Wensheng
[3
]
Wang, Yuanjia
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Biostat, New York, NY 10032 USAUniv Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
Wang, Yuanjia
[4
]
机构:
[1] Univ Wisconsin Madison, Dept Biostat & Med Informat, Madison, WI 53706 USA
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Northeast Normal Univ, Sch Math & Stat, Changchun, Jilin, Peoples R China
[4] Columbia Univ, Dept Biostat, New York, NY 10032 USA
Double- and multi-robust;
optimal treatment regimes;
propensity score;
value function;
ROBUST ESTIMATION;
DECISION;
D O I:
10.5705/ss.202021.0339
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We propose a new modeling and estimation approach that selects an optimal treatment regime by constructing a robust estimating equation. The method is protected against a misspecification of the propensity score model, the outcome regression model for the nontreated group, and the potential nonmonotonic treatment difference model. Our method also allows residual errors to depend on the covariates. We include a single index structure to facilitate the nonparametric estimation of the treatment difference. We then identify the optimal treatment by maximizing the value function. We also establish the theoretical properties of the treatment assignment strategy. Lastly, we demonstrate the performance and effectiveness of our proposed estimators using extensive simulation studies and an analysis of a real data set from a study on the effect of maternal smoking on baby birth weight.
机构:
Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
Bristol Myers Squibb, Global Biometr Sci, Pennington, NJ USAUniv Calif Riverside, Dept Stat, Riverside, CA 92521 USA
Guo, Wenchuan
Zhou, Xiao-Hua
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
Peking Univ, Dept Biostat, Beijing 100871, Peoples R ChinaUniv Calif Riverside, Dept Stat, Riverside, CA 92521 USA
Zhou, Xiao-Hua
Ma, Shujie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USAUniv Calif Riverside, Dept Stat, Riverside, CA 92521 USA
机构:
St Jude Childrens Res Hosp, Dept Biostat, 262 Danny Thomas Pl, Memphis, TN 38105 USASt Jude Childrens Res Hosp, Dept Biostat, 262 Danny Thomas Pl, Memphis, TN 38105 USA
Zhou, Yiwang
Song, Peter X. K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Biostat, 1415 Washington Hts, Ann Arbor, MI 48109 USASt Jude Childrens Res Hosp, Dept Biostat, 262 Danny Thomas Pl, Memphis, TN 38105 USA