Multi-Instance Learning for Vocal Fold Leukoplakia Diagnosis Using White Light and Narrow-Band Imaging: A Multicenter Study

被引:2
作者
Tie, Cheng-Wei [1 ]
Li, De-Yang [2 ]
Zhu, Ji-Qing [1 ]
Wang, Mei-Ling [3 ,4 ]
Wang, Jian-Hui [5 ]
Chen, Bing-Hong [3 ,4 ]
Li, Ying [3 ,4 ]
Zhang, Sen [6 ]
Liu, Lin [7 ]
Guo, Li [8 ]
Yang, Long [9 ]
Yang, Li-Qun [9 ]
Wei, Jiao [10 ]
Jiang, Feng [11 ]
Zhao, Zhi-Qiang [12 ]
Wang, Gui-Qi [1 ]
Zhang, Wei [3 ,4 ]
Zhang, Quan-Mao [5 ]
Ni, Xiao-Guang [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Dept Endoscopy, Natl Canc Ctr, Natl Clin Res Ctr Canc,Canc Hosp, 17 Panjiayuan South Lane, Beijing 100021, Peoples R China
[2] Harbin Med Univ, Affiliated Hosp 1, Harbin, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc,Dept Endoscopy, West Side Baohe Ave, Shenzhen 518116, Guangdong, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Shenzhen Hosp, West Side Baohe Ave, Shenzhen 518116, Guangdong, Peoples R China
[5] Shanxi Med Univ, Chinese Acad Med Sci, Shanxi Prov Canc Hosp, Shanxi Hosp,Canc Hosp,Dept Endoscopy, 3 Xinghualing Dist, Taiyuan 030001, Shanxi, Peoples R China
[6] Shanxi Med Univ, Hosp 1, Dept Otolaryngol Head & Neck Surg, Taiyuan, Peoples R China
[7] Dalian Friendship Hosp, Dept Otolaryngol Head & Neck Surg, Dalian, Peoples R China
[8] Henan Univ Sci & Technol, Affiliated Hosp 1, Coll Clin Med, Dept Otolaryngol Head & Neck Surg, Luoyang, Peoples R China
[9] Second Peoples Hosp Baoshan City, Dept Otolaryngol, Baoshan, Peoples R China
[10] Qujing Second Peoples Hosp Yunnan Prov, Dept Otolaryngol, Qujing, Peoples R China
[11] Kunming First Peoples Hosp, Dept Otolaryngol, Kunming, Peoples R China
[12] Baoshan Peoples Hosp, Dept Otolaryngol, Baoshan, Peoples R China
关键词
laryngoscopy; multi-instance learning; narrow-band imaging; vocal fold leukoplakia; white light imaging; LESION;
D O I
10.1002/lary.31537
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Objectives: Vocal fold leukoplakia (VFL) is a precancerous lesion of laryngeal cancer, and its endoscopic diagnosis poses challenges. We aim to develop an artificial intelligence (AI) model using white light imaging (WLI) and narrow-band imaging (NBI) to distinguish benign from malignant VFL. Methods: A total of 7057 images from 426 patients were used for model development and internal validation. Additionally, 1617 images from two other hospitals were used for model external validation. Modeling learning based on WLI and NBI modalities was conducted using deep learning combined with a multi-instance learning approach (MIL). Furthermore, 50 prospectively collected videos were used to evaluate real-time model performance. A human-machine comparison involving 100 patients and 12 laryngologists assessed the real-world effectiveness of the model. Results: The model achieved the highest area under the receiver operating characteristic curve (AUC) values of 0.868 and 0.884 in the internal and external validation sets, respectively. AUC in the video validation set was 0.825 (95% CI: 0.704-0.946). In the human-machine comparison, AI significantly improved AUC and accuracy for all laryngologists (p < 0.05). With the assistance of AI, the diagnostic abilities and consistency of all laryngologists improved. Conclusions: Our multicenter study developed an effective AI model using MIL and fusion of WLI and NBI images for VFL diagnosis, particularly aiding junior laryngologists. However, further optimization and validation are necessary to fully assess its potential impact in clinical settings. Level of Evidence3 Laryngoscope, 2024
引用
收藏
页码:4321 / 4328
页数:8
相关论文
共 32 条
[1]   The White Lesion, Hyperkeratosis, and Dysplasia [J].
Ali, S. Ahmed ;
Smith, Joshua D. ;
Hogikyan, Norman D. .
OTOLARYNGOLOGIC CLINICS OF NORTH AMERICA, 2019, 52 (04) :703-+
[2]   Where do we stand in AI for endoscopic image analysis? Deciphering gaps and future directions [J].
Ali, Sharib .
NPJ DIGITAL MEDICINE, 2022, 5 (01)
[3]   Videomics of the Upper Aero-Digestive Tract Cancer: Deep Learning Applied to White Light and Narrow Band Imaging for Automatic Segmentation of Endoscopic Images [J].
Azam, Muhammad Adeel ;
Sampieri, Claudio ;
Ioppi, Alessandro ;
Benzi, Pietro ;
Giordano, Giorgio Gregory ;
De Vecchi, Marta ;
Campagnari, Valentina ;
Li, Shunlei ;
Guastini, Luca ;
Paderno, Alberto ;
Moccia, Sara ;
Piazza, Cesare ;
Mattos, Leonardo S. ;
Peretti, Giorgio .
FRONTIERS IN ONCOLOGY, 2022, 12
[4]   Artificial Intelligence and Laryngeal Cancer: From Screening to Prognosis: A State of the Art Review [J].
Bensoussan, Yael ;
Vanstrum, Erik B. ;
Johns, Michael M., III ;
Rameau, Anais .
OTOLARYNGOLOGY-HEAD AND NECK SURGERY, 2023, 168 (03) :319-329
[5]   Contact Endoscopy - Narrow Band Imaging (CE-NBI) data set for laryngeal lesion assessment [J].
Esmaeili, Nazila ;
Davaris, Nikolaos ;
Boese, Axel ;
Illanes, Alfredo ;
Navab, Nassir ;
Friebe, Michael ;
Arens, Christoph .
SCIENTIFIC DATA, 2023, 10 (01)
[6]   Deep Convolution Neural Network for Laryngeal Cancer Classification on Contact Endoscopy-Narrow Band Imaging [J].
Esmaeili, Nazila ;
Sharaf, Esam ;
Gomes Ataide, Elmer Jeto ;
Illanes, Alfredo ;
Boese, Axel ;
Davaris, Nikolaos ;
Arens, Christoph ;
Navab, Nassir ;
Friebe, Michael .
SENSORS, 2021, 21 (23)
[7]   A Comprehensive Review on Multiple Instance Learning [J].
Fatima, Samman ;
Ali, Sikandar ;
Kim, Hee-Cheol .
ELECTRONICS, 2023, 12 (20)
[8]  
Gale N., 2005, Pathology and genetics of head and neck tumours, P177
[9]   Use of narrowband imaging for the diagnosis and screening of laryngeal cancer: A systematic review and meta-analysis [J].
Kim, Do Hyun ;
Kim, Yeonji ;
Kim, Sung Won ;
Hwang, Se Hwan .
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2020, 42 (09) :2635-2643
[10]   Endoscopic diagnosis of laryngeal cancer and precancerous lesions by narrow band imaging [J].
Ni, X-G ;
He, S. ;
Xu, Z-G ;
Gao, L. ;
Lu, N. ;
Yuan, Z. ;
Lai, S-Q ;
Zhang, Y-M ;
Yi, J-L ;
Wang, X-L ;
Zhang, L. ;
Li, X-Y ;
Wang, G-Q .
JOURNAL OF LARYNGOLOGY AND OTOLOGY, 2011, 125 (03) :288-296