Large optimal cyclic subspace codes

被引:6
作者
Zhang, He [1 ]
Tang, Chunming [1 ,2 ]
Cao, Xiwang [3 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Guangdong Prov Key Lab Informat Secur Technol, Guangzhou 510006, Peoples R China
[3] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 211100, Peoples R China
基金
中国国家自然科学基金;
关键词
Constant dimension codes; Optimal minimum distance; Sidon spaces; Cyclic subspace codes; SIDON SPACES; CONSTRUCTION;
D O I
10.1016/j.disc.2024.114007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Constant dimension codes, a specialized subclass of subspace codes, have garnered significant attention in recent years due to their applications in random network coding. Among these codes, large cyclic constant dimension codes, endowed with optimal minimum distance, offer efficient solutions for encoding and decoding algorithms. This paper is dedicated to the design of cyclic constant dimension codes that achieve the dual goals: maximizing code size while maintaining optimal minimum distance. We first explore a new form of Sidon spaces and employ this new form to construct several families of cyclic subspace codes. Our codes have optimal minimum distances and have more codewords than previous constructions in the literature. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 23 条
  • [1] An analogue of Vosper's theorem for extension fields
    Bachoc, Christine
    Serra, Oriol
    Zemor, Gilles
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2017, 163 (03) : 423 - 452
  • [2] Subspace Polynomials and Cyclic Subspace Codes
    Ben-Sasson, Eli
    Etzion, Tuvi
    Gabizon, Ariel
    Raviv, Netanel
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (03) : 1157 - 1165
  • [3] Castello C., 2023, J. Algebraic Comb, V58, P1299
  • [4] Constructions of cyclic constant dimension codes
    Chen, Bocong
    Liu, Hongwei
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2018, 86 (06) : 1267 - 1279
  • [5] Erdas P., 1981, C NUMER, V32, P49
  • [6] Error-Correcting Codes in Projective Space
    Etzion, Tuvi
    Vardy, Alexander
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) : 1165 - 1173
  • [7] New constructions of large cyclic subspace codes and Sidon spaces
    Feng, Tao
    Wang, Ye
    [J]. DISCRETE MATHEMATICS, 2021, 344 (04)
  • [8] Distance Distributions of Cyclic Orbit Codes
    Gluesing-Luerssen, Heide
    Lehmann, Hunter
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (03) : 447 - 470
  • [9] Kohnert A, 2008, LECT NOTES COMPUT SC, V5393, P31, DOI 10.1007/978-3-540-89994-5_4
  • [10] Li Y., ARXIV