共 8 条
Partial reformulation-linearization based optimization models for the Golomb ruler problem
被引:0
|作者:
Ouzia, Hacene
[1
]
机构:
[1] Sorbonne Univ, CNRS, 4 Pl Jussieu, F-75252 Paris, France
关键词:
Golomb ruler problem;
reformulation-linearization techniques;
mixed integer linear programming;
integer nonlinear programming;
quadratic programming;
RELAXATIONS;
HIERARCHY;
ALGORITHM;
D O I:
10.1051/ro/2024121
中图分类号:
C93 [管理学];
O22 [运筹学];
学科分类号:
070105 ;
12 ;
1201 ;
1202 ;
120202 ;
摘要:
In this paper, we provide a straightforward proof of a conjecture proposed in [P. Duxbury, C. Lavor and L.L. de Salles-Neto, RAIRO:RO 55 (2021) 2241-2246.] regarding the optimal solutions of a non-convex mathematical programming model of the Golomb ruler problem. Subsequently, we investigate the computational efficiency of four new binary mixed-integer linear programming models to compute optimal Golomb rulers. These models are derived from a well-known nonlinear integer model proposed in [B. Kocuk and W.-J. van Hoeve, A Computational Comparison of Optimization Methods for the Golomb Ruler Problem. (2019) 409-425.], utilizing the reformulation-linearization technique. Finally, we provide the correct outputs of the greedy heuristic proposed in [P. Duxbury, C. Lavor and L.L. de Salles-Neto, RAIRO:RO 55 (2021) 2241-2246.] and correct false conclusions stated or implied therein.
引用
收藏
页码:3171 / 3188
页数:18
相关论文