Partial reformulation-linearization based optimization models for the Golomb ruler problem

被引:0
|
作者
Ouzia, Hacene [1 ]
机构
[1] Sorbonne Univ, CNRS, 4 Pl Jussieu, F-75252 Paris, France
关键词
Golomb ruler problem; reformulation-linearization techniques; mixed integer linear programming; integer nonlinear programming; quadratic programming; RELAXATIONS; HIERARCHY; ALGORITHM;
D O I
10.1051/ro/2024121
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we provide a straightforward proof of a conjecture proposed in [P. Duxbury, C. Lavor and L.L. de Salles-Neto, RAIRO:RO 55 (2021) 2241-2246.] regarding the optimal solutions of a non-convex mathematical programming model of the Golomb ruler problem. Subsequently, we investigate the computational efficiency of four new binary mixed-integer linear programming models to compute optimal Golomb rulers. These models are derived from a well-known nonlinear integer model proposed in [B. Kocuk and W.-J. van Hoeve, A Computational Comparison of Optimization Methods for the Golomb Ruler Problem. (2019) 409-425.], utilizing the reformulation-linearization technique. Finally, we provide the correct outputs of the greedy heuristic proposed in [P. Duxbury, C. Lavor and L.L. de Salles-Neto, RAIRO:RO 55 (2021) 2241-2246.] and correct false conclusions stated or implied therein.
引用
收藏
页码:3171 / 3188
页数:18
相关论文
共 8 条
  • [1] A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem
    Hahn, Peter M.
    Zhu, Yi-Rong
    Guignard, Monique
    Hightower, William L.
    Saltzman, Matthew J.
    INFORMS JOURNAL ON COMPUTING, 2012, 24 (02) : 202 - 209
  • [2] A reformulation-linearization technique for optimization over simplices
    Selvi, Aras
    den Hertog, Dick
    Wiesemann, Wolfram
    MATHEMATICAL PROGRAMMING, 2023, 197 (01) : 427 - 447
  • [3] A revised reformulation-linearization technique for the quadratic assignment problem
    Rostami, Borzou
    Malucelli, Federico
    DISCRETE OPTIMIZATION, 2014, 14 : 97 - 103
  • [4] Integer programming approach and application of reformulation-linearization technique to liver exchange problem
    Yuh, Junsang
    Eun, Joonyup
    Cheong, Taesu
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [5] Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique
    Pessoa, Artur Alves
    Hahn, Peter M.
    Guignard, Monique
    Zhu, Yi-Rong
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (01) : 54 - 63
  • [6] A conjecture on a continuous optimization model for the Golomb Ruler Problem
    Duxbury, Phil
    Lavor, Carlile
    de Salles-Neto, Luiz Leduino
    RAIRO-OPERATIONS RESEARCH, 2021, 55 (04) : 2241 - 2246
  • [7] A Graphics Processing Unit Algorithm to Solve the Quadratic Assignment Problem Using Level-2 Reformulation-Linearization Technique
    Goncalves, Alexandre Domingues
    Pessoa, Artur Alves
    Bentes, Cristiana
    Farias, Ricardo
    Drummon, Lucia Maria de A.
    INFORMS JOURNAL ON COMPUTING, 2017, 29 (04) : 676 - 687
  • [8] Another mathematical optimization models based on assignment problem
    Berezny, Stefan
    Hajduova, Zuzana
    Weiss, Erik
    Mixtaj, Ladislav
    ACTA MONTANISTICA SLOVACA, 2007, 12 (04) : 356 - 360