Maximizing Accuracy in AI-Driven Pattern Detection in Cardiac Care

被引:0
作者
Chauhan, Ritu [1 ]
Singh, Dhananjay [2 ]
机构
[1] Amity Univ, Artificial Intelligence & IoT Lab, Ctr Computat Biol & Bioinformat, Noida, India
[2] St Louis Univ, ReSENSE Lab, Sch Profess Studies, St Louis, MO 63103 USA
来源
INTELLIGENT HUMAN COMPUTER INTERACTION, IHCI 2023, PT I | 2024年 / 14531卷
关键词
Heart disease; Factors of heart diseases; Prediction; AI; Machine learning; Cardiovascular disease; DISEASES; HEALTH;
D O I
10.1007/978-3-031-53827-8_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial Intelligence (AI) has laid down the platform where all the emerging fields can benefit for detection of patterns. In similar, evolving AI technology has revolutionized the traditional healthcare technology to other level of technological advancement. Hence, Machine learning paradigms are designed to transform the era of learning and retrieval of hidden patterns from the healthcare databases. The current scope of the work focuses on detecting patterns from car diac care database using machine learning. The database comprise of several features such as age, gender, smoking variable, blood pressure, diabetes, alcohol consumption, sleep variables and other features which can be the potential cause for the prognosis of the disease Further, the databases applicability is measured with different classifiers such K nearest neighbours (KNN), Adaboost, XGboost, Gradient Boost, Decision Tree Logistic Regression, and Random Forest Classifiers to determine the most relevant classifier for the prognosis of the disease. The results suggest that Xgboost works efficiently with higher accuracy rate as compared to other classifiers.
引用
收藏
页码:176 / 187
页数:12
相关论文
共 29 条
[21]   Dissecting racial bias in an algorithm used to manage the health of populations [J].
Obermeyer, Ziad ;
Powers, Brian ;
Vogeli, Christine ;
Mullainathan, Sendhil .
SCIENCE, 2019, 366 (6464) :447-+
[22]  
Patel JM., 2016, J. Comput. Sci. Electron., V7, P129
[23]  
Roessle M., 2019, 2019 IEEE INT C E HL, P1, DOI [10.1109/HealthCom46333.2019.9009429, DOI 10.1109/HEALTHCOM46333.2019.9009429]
[24]   Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019 Update From the GBD 2019 Study [J].
Roth, Gregory A. ;
Mensah, George A. ;
Johnson, Catherine O. ;
Addolorato, Giovanni ;
Ammirati, Enrico ;
Baddour, Larry M. ;
Barengo, Noel C. ;
Beaton, Andrea Z. ;
Benjamin, Emelia J. ;
Benziger, Catherine P. ;
Bonny, Aime ;
Brauer, Michael ;
Brodmann, Marianne ;
Cahill, Thomas J. ;
Carapetis, Jonathan ;
Catapano, Alberico L. ;
Chugh, Sumeet S. ;
Cooper, Leslie T. ;
Coresh, Josef ;
Criqui, Michael ;
DeCleene, Nicole ;
Eagle, Kim A. ;
Emmons-Bell, Sophia ;
Feigin, Valery L. ;
Fernandez-Sola, Joaquim ;
Fowkes, Gerry ;
Gakidou, Emmanuela ;
Grundy, Scott M. ;
He, Feng J. ;
Howard, George ;
Hu, Frank ;
Inker, Lesley ;
Karthikeyan, Ganesan ;
Kassebaum, Nicholas ;
Koroshetz, Walter ;
Lavie, Carl ;
Lloyd-Jones, Donald ;
Lu, Hong S. ;
Mirijello, Antonio ;
Temesgen, Awoke Misganaw ;
Mokdad, Ali ;
Moran, Andrew E. ;
Muntner, Paul ;
Narula, Jagat ;
Neal, Bruce ;
Ntsekhe, Mpiko ;
de Oliveira, Glaucia Moraes ;
Otto, Catherine ;
Owolabi, Mayowa ;
Pratt, Michael .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 76 (25) :2982-3021
[25]  
Stanaway JD, 2018, LANCET, V392, P1923, DOI 10.1016/s0140-6736(18)32225-6
[26]   Sarve: synthetic data and local differential privacy for private frequency estimation [J].
Varma, Gatha ;
Chauhan, Ritu ;
Singh, Dhananjay .
CYBERSECURITY, 2022, 5 (01)
[27]   Feature Extraction Based Machine Learning for Human Burn Diagnosis From Burn images [J].
Yadav, D. P. ;
Sharma, Ashish ;
Singh, Madhusudan ;
Goyal, Ayush .
IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2019, 7
[28]  
YOUNG NO GI, 2007, [Science of Emotion & Sensibility, 감성과학], V10, P147
[29]  
Zhang Z., 2019, Front. Physiol., V10, P130