Generating Realistic Natural Language Counterfactuals

被引:0
|
作者
Robeer, Marcel [1 ,2 ]
Bex, Floris [1 ,2 ,3 ]
Feelders, Ad [2 ]
机构
[1] Netherlands Police Lab AI, Utrecht, Netherlands
[2] Univ Utrecht, Utrecht, Netherlands
[3] Tilburg Univ, Tilburg, Netherlands
来源
FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021 | 2021年
关键词
ADVERSARIAL NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We propose CounterfactualGAN: a method that combines a conditional GAN and the embeddings of a pretrained BERT encoder to model-agnostically generate realistic natural language text counterfactuals for explaining regression and classification tasks. Experimental results show that our method produces perceptibly distinguishable counterfactuals, while outperforming four baseline methods on fidelity and human judgments of naturalness, across multiple datasets and multiple predictive models.
引用
收藏
页码:3611 / 3625
页数:15
相关论文
共 50 条
  • [31] Generating knowledge aware explanation for natural language inference
    Yang, Zongbao
    Xu, Yinxin
    Hu, Jinlong
    Dong, Shoubin
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (02)
  • [32] MESDeceiver: Efficiently Generating Natural Language Adversarial Examples
    Zhao, Tengfei
    Ge, Zhaocheng
    Hu, Hanping
    Shi, Dingmeng
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [33] A Context Aware Approach for Generating Natural Language Attacks
    Maheshwary, Rishabh
    Maheshwary, Saket
    Pudi, Vikram
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15839 - 15840
  • [34] Generating Parametric BRDFs from Natural Language Descriptions
    Memery, Sean
    Cedron, Osmar
    Subr, Kartic
    COMPUTER GRAPHICS FORUM, 2023, 42 (07)
  • [35] Generating Predicate Logic Expressions From Natural Language
    Levkovskyi, Oleksii
    Li, Wei
    SOUTHEASTCON 2021, 2021, : 465 - 472
  • [36] MCCD: Generating Human Natural Language Conversational Datasets
    Sanches, Matheus F.
    de Sa, Jader M. C.
    de Souza, Allan M.
    Silva, Diego
    de Souza, Rafael R.
    dos Reis, Julio C.
    Villas, Leandro A.
    ICEIS: PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS - VOL 2, 2022, : 247 - 255
  • [37] A Workflow for Generating Patient Counterfactuals in Lung Transplant Recipients
    Rugolon, Franco
    Bampa, Maria
    Papapetrou, Panagiotis
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 1753 : 291 - 306
  • [38] Generating visemes for realistic animation
    Kalberer, GA
    Müller, P
    Van Gool, L
    VISION MODELING, AND VISUALIZATION 2002, PROCEEDINGS, 2002, : 233 - 240
  • [39] NoviCode: Generating Programs from Natural Language Utterances by Novices
    Mordechai, Asaf Achi
    Goldberg, Yoav
    Tsarfaty, Reut
    TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2024, 12 : 1330 - 1345
  • [40] A Neural Model for Generating Natural Language Summaries of Program Subroutines
    LeClair, Alexander
    Jiang, Siyuan
    McMillan, Collin
    2019 IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2019), 2019, : 795 - 806