Generating Realistic Natural Language Counterfactuals

被引:0
|
作者
Robeer, Marcel [1 ,2 ]
Bex, Floris [1 ,2 ,3 ]
Feelders, Ad [2 ]
机构
[1] Netherlands Police Lab AI, Utrecht, Netherlands
[2] Univ Utrecht, Utrecht, Netherlands
[3] Tilburg Univ, Tilburg, Netherlands
来源
FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021 | 2021年
关键词
ADVERSARIAL NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We propose CounterfactualGAN: a method that combines a conditional GAN and the embeddings of a pretrained BERT encoder to model-agnostically generate realistic natural language text counterfactuals for explaining regression and classification tasks. Experimental results show that our method produces perceptibly distinguishable counterfactuals, while outperforming four baseline methods on fidelity and human judgments of naturalness, across multiple datasets and multiple predictive models.
引用
收藏
页码:3611 / 3625
页数:15
相关论文
共 50 条
  • [11] Generating Music from Natural Language Text
    Rangarajan, Rohit
    2015 TENTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION MANAGEMENT (ICDIM), 2015, : 23 - 26
  • [12] GENERATING CONCISE NATURAL-LANGUAGE SUMMARIES
    MCKEOWN, K
    ROBIN, J
    KUKICH, K
    INFORMATION PROCESSING & MANAGEMENT, 1995, 31 (05) : 703 - 733
  • [13] AUTOMATICALLY GENERATING NATURAL-LANGUAGE REPORTS
    KALITA, J
    INTERNATIONAL JOURNAL OF MAN-MACHINE STUDIES, 1989, 30 (04): : 399 - 423
  • [14] Automatically Generating Natural Language Documentation for Methods
    Newman, Christian D.
    Dragan, Natalia
    Collard, Michael L.
    Maletic, Jonathan, I
    Decker, Michael J.
    Guarnera, Drew T.
    Abid, Nahla
    2018 IEEE THIRD INTERNATIONAL WORKSHOP ON DYNAMIC SOFTWARE DOCUMENTATION (DYSDOC3), 2018, : 1 - 2
  • [15] Generating Executable Scenarios from Natural Language
    Gordon, Michal
    Harel, David
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2009, 5449 : 456 - 467
  • [16] The role of saliency in generating natural language arguments
    Reed, C
    IJCAI-99: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 & 2, 1999, : 876 - 881
  • [17] Generating Natural Language Descriptions From Tables
    Cao, Juan
    IEEE ACCESS, 2020, 8 (08): : 46206 - 46216
  • [18] Generating Commonsense Counterfactuals for Stable Relation Extraction
    Miao, Xin
    Li, Yongqi
    Qian, Tieyun
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, EMNLP 2023, 2023, : 5654 - 5668
  • [19] Connecting Attributions and QA Model Behavior on Realistic Counterfactuals
    Ye, Xi
    Nair, Rohan
    Durrett, Greg
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 5496 - 5512
  • [20] THE NATURAL AND THE NORMATIVE: SUPERVENIENCE AND COUNTERFACTUALS
    Ross, Steven
    PHILOSOPHICAL FORUM, 2012, 43 (02): : 197 - 214