Generating Realistic Natural Language Counterfactuals

被引:0
作者
Robeer, Marcel [1 ,2 ]
Bex, Floris [1 ,2 ,3 ]
Feelders, Ad [2 ]
机构
[1] Netherlands Police Lab AI, Utrecht, Netherlands
[2] Univ Utrecht, Utrecht, Netherlands
[3] Tilburg Univ, Tilburg, Netherlands
来源
FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021 | 2021年
关键词
ADVERSARIAL NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We propose CounterfactualGAN: a method that combines a conditional GAN and the embeddings of a pretrained BERT encoder to model-agnostically generate realistic natural language text counterfactuals for explaining regression and classification tasks. Experimental results show that our method produces perceptibly distinguishable counterfactuals, while outperforming four baseline methods on fidelity and human judgments of naturalness, across multiple datasets and multiple predictive models.
引用
收藏
页码:3611 / 3625
页数:15
相关论文
共 55 条
[1]  
[Anonymous], 2020, CASE BASED REASONING, DOI DOI 10.1007/978-3-030-58342-211
[2]  
[Anonymous], 2017, P 2017 IEEE INT C CO
[3]   Analysis Methods in Neural Language Processing: A Survey [J].
Belinkov, Yonatan ;
Glass, James .
TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2019, 7 :49-72
[4]  
Bowman Samuel R., 2015, P 2015 C EMP METH NA, P632, DOI 10.18653/v1/D15-1075
[5]  
Byrne RMJ, 2019, PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P6276
[6]  
Cer D, 2018, CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018): PROCEEDINGS OF SYSTEM DEMONSTRATIONS, P169
[7]   StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [J].
Choi, Yunjey ;
Choi, Minje ;
Kim, Munyoung ;
Ha, Jung-Woo ;
Kim, Sunghun ;
Choo, Jaegul .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8789-8797
[8]  
Conneau Alexis, 2017, P C EMP METH NAT LAN, P670, DOI DOI 10.18653/V1/D17-1070
[9]   Generative Adversarial Networks An overview [J].
Creswell, Antonia ;
White, Tom ;
Dumoulin, Vincent ;
Arulkumaran, Kai ;
Sengupta, Biswa ;
Bharath, Anil A. .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (01) :53-65
[10]  
Davidson T., 2017, P INT AAAI C WEB SOC, VVolume 11, P512, DOI [DOI 10.1609/ICWSM.V11I1.14955, 10.1609/icwsm.v11i1.14955]