Generating Realistic Natural Language Counterfactuals

被引:0
|
作者
Robeer, Marcel [1 ,2 ]
Bex, Floris [1 ,2 ,3 ]
Feelders, Ad [2 ]
机构
[1] Netherlands Police Lab AI, Utrecht, Netherlands
[2] Univ Utrecht, Utrecht, Netherlands
[3] Tilburg Univ, Tilburg, Netherlands
来源
FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021 | 2021年
关键词
ADVERSARIAL NETWORKS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Counterfactuals are a valuable means for understanding decisions made by ML systems. However, the counterfactuals generated by the methods currently available for natural language text are either unrealistic or introduce imperceptible changes. We propose CounterfactualGAN: a method that combines a conditional GAN and the embeddings of a pretrained BERT encoder to model-agnostically generate realistic natural language text counterfactuals for explaining regression and classification tasks. Experimental results show that our method produces perceptibly distinguishable counterfactuals, while outperforming four baseline methods on fidelity and human judgments of naturalness, across multiple datasets and multiple predictive models.
引用
收藏
页码:3611 / 3625
页数:15
相关论文
共 50 条
  • [1] Relevance-based Infilling for Natural Language Counterfactuals
    Betti, Lorenzo
    Abrate, Carlo
    Bonchi, Francesco
    Kaltenbrunner, Andreas
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 88 - 98
  • [2] Towards the Realistic Natural Language Representations
    Sojka, Petr
    RASLAN 2013: RECENT ADVANCES IN SLAVONIC NATURAL LANGUAGE PROCESSING, 2013, : 87 - 91
  • [3] THE ROLE OF NATURAL LANGUAGE IN THE REALISTIC METAPHYSICS
    Marniarczyk, Andrzej
    ROCZNIKI HUMANISTYCZNE, 2011, 59 (08): : 7 - 22
  • [4] A Methodology for Generating Natural Language Paraphrases
    Perikos, Isidoros
    Hatzilygeroudis, Ioannis
    2016 7TH INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS & APPLICATIONS (IISA), 2016,
  • [5] Generating Customizable Natural Language Descriptions
    Costa, A.
    Paraboni, I
    IEEE LATIN AMERICA TRANSACTIONS, 2019, 17 (08) : 1252 - 1258
  • [6] Generating Natural Language Adversarial Examples
    Alzantot, Moustafa
    Sharma, Yash
    Elgohary, Ahmed
    Ho, Bo-Jhang
    Srivastava, Mani B.
    Chang, Kai-Wei
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 2890 - 2896
  • [7] Generating Natural Language Numerals with TeX
    Derzhanski, Ivan
    Veneva, Milena
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE COMPUTATIONAL LINGUISTICS IN BULGARIA (CLIB '20), 2020, : 112 - 120
  • [8] Generating natural language descriptions of project plans
    Wasko, M
    Dale, R
    ADVANCED TOPICS IN ARTIFICIAL INTELLIGENCE, 1999, 1747 : 109 - 121
  • [9] Natural language understanding for generating grasp actions
    Watabe, Hirokazu
    Tsuchiya, Seiji
    Masuda, Yasutaka
    Kawaoka, Tsukasa
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS: KES 2007 - WIRN 2007, PT I, PROCEEDINGS, 2007, 4692 : 813 - +
  • [10] Generating Abstract Arguments: a Natural Language Approach
    Cabrio, Elena
    Villata, Serena
    COMPUTATIONAL MODELS OF ARGUMENT, 2012, 245 : 454 - 461