Practical Critic Gradient based Actor Critic for On-Policy Reinforcement Learning

被引:0
作者
Gurumurthy, Swaminathan [1 ]
Manchester, Zachary [1 ]
Kolter, J. Zico [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Bosch Ctr AI, Sunnyvale, CA USA
来源
LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211 | 2023年 / 211卷
关键词
Reinforcement Learning; Actor Critic; Continuous control; Highly parallel Environments;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
On-policy reinforcement learning algorithms have been shown to be remarkably efficient at learning policies for continuous control robotics tasks. They are highly parallelizable and hence have benefited tremendously from the recent rise in GPU based parallel simulators. The most widely used on-policy reinforcement learning algorithm is proximal policy optimization (PPO) which was introduced in 2017 and was designed for a somewhat different setting with CPU based serial or less parallelizable simulators. However, suprisingly, it has maintained dominance even on tasks based on the highly parallelizable simulators of today. In this paper, we show that a different class of on-policy algorithms based on estimating the policy gradient using the critic-action gradients are better suited when using highly parallelizable simulators. The primary issues for these algorithms arise from the lack of diversity of the on-policy experiences used for the updates and the instabilities arising from the interaction between the biased critic gradients and the rapidly changing policy distribution. We address the former by simply increasing the number of parallel simulation runs (thanks to the GPU based simulators) along with an appropriate schedule on the policy entropy to ensure diversity of samples. We address the latter by adding a policy averaging step and value averaging step (as in off-policy methods). With these modifications, we observe that the critic gradient based on-policy method (CGAC) consistently achieves higher episode returns compared with existing baselines. Furthermore, in environments with high dimensional action space, CGAC also trains much faster (in wall-clock time) than the corresponding baselines.
引用
收藏
页数:14
相关论文
共 40 条
[1]  
Allshire A, 2022, Arxiv, DOI arXiv:2108.09779
[2]   Learning dexterous in-hand manipulation [J].
Andrychowicz, Marcin ;
Baker, Bowen ;
Chociej, Maciek ;
Jozefowicz, Rafal ;
McGrew, Bob ;
Pachocki, Jakub ;
Petron, Arthur ;
Plappert, Matthias ;
Powell, Glenn ;
Ray, Alex ;
Schneider, Jonas ;
Sidor, Szymon ;
Tobin, Josh ;
Welinder, Peter ;
Weng, Lilian ;
Zaremba, Wojciech .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2020, 39 (01) :3-20
[3]   Drone Deep Reinforcement Learning: A Review [J].
Azar, Ahmad Taher ;
Koubaa, Anis ;
Ali Mohamed, Nada ;
Ibrahim, Habiba A. ;
Ibrahim, Zahra Fathy ;
Kazim, Muhammad ;
Ammar, Adel ;
Benjdira, Bilel ;
Khamis, Alaa M. ;
Hameed, Ibrahim A. ;
Casalino, Gabriella .
ELECTRONICS, 2021, 10 (09)
[4]  
Babaeizadeh M., 2017, ICLR, P1
[5]   NEURONLIKE ADAPTIVE ELEMENTS THAT CAN SOLVE DIFFICULT LEARNING CONTROL-PROBLEMS [J].
BARTO, AG ;
SUTTON, RS ;
ANDERSON, CW .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05) :834-846
[6]  
Bhatnagar Shalabh, 2007, NIPS
[7]  
Chen SX, 2023, Arxiv, DOI arXiv:2203.05194
[8]  
Chen T., 2021, 5 ANN C ROB LEARN
[9]  
Clemente AV, 2017, Arxiv, DOI arXiv:1705.04862
[10]  
Daniel Freeman C., 2021, Brax-a differentiable physics engine for large scale rigid body simulation