Artificial Intelligence and Machine Learning inNeuroregeneration: A Systematic Review

被引:2
作者
Mulpuri, Rajendra P. [1 ]
Konda, Nikhitha [2 ]
Gadde, Sai T. [1 ]
Amalakanti, Sridhar [1 ]
Valiveti, Sindhu Chowdary [3 ]
机构
[1] All India Inst Med Sci, Gen Med, Mangalagiri, India
[2] Alluri Sitaramaraju Acad Med Sci, Internal Med, Eluru, India
[3] Sri Padmavathi Med Coll Women, Intern Gen Med, Tirupati, India
关键词
regenerative medicine; neural networks; deep neural networks; machine learning; artificial intelligence; neuroregeneration; MIXED METHODS; QUALITY;
D O I
10.7759/cureus.61400
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) and machine learning (ML) show promise in various medical domains,including medical imaging, precise diagnoses, and pharmaceutical research. In neuroscience andneurosurgery, AI/ML advancements enhance brain-computer interfaces, neuroprosthetics, andsurgical planning. They are poised to revolutionize neuroregeneration by unraveling the nervoussystem's complexities. However, research on AI/ML in neuroregeneration is fragmented,necessitating a comprehensive review. Adhering to Preferred Reporting Items for SystematicReviews and Meta-Analyses (PRISMA) recommendations, 19 English-language papers focusing onAI/ML in neuroregeneration were selected from a total of 247. Two researchers independentlyconducted data extraction and quality assessment using the Mixed Methods Appraisal Tool (MMAT)2018. Eight studies were deemed high quality, 10 moderate, and four low. Primary goals includeddiagnosing neurological disorders (35%), robotic rehabilitation (18%), and drug discovery (12%each). Methods ranged from analyzing imaging data (24%) to animal models (24%) and electronichealth records (12%). Deep learning accounted for 41% of AI/ML techniques, while standard MLalgorithms constituted 29%. The review underscores the growing interest in AI/ML forneuroregenerative medicine, with increasing publications. These technologies aid in diagnosingdiseases and facilitating functional recovery through robotics and targeted stimulation. AI-drivendrug discovery holds promise for identifying neuroregenerative therapies. Nonetheless, addressingexisting limitations remains crucial in this rapidly evolving field.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Machine Learning and Artificial Intelligence in Circular Economy: A Bibliometric Analysis and Systematic Literature Review
    Noman A.A.
    Akter U.H.
    Pranto T.H.
    Haque A.K.M.B.
    [J]. Ann. Emer. Tech. Comp., 2022, 2 (13-40): : 13 - 40
  • [22] The Use of Artificial Intelligence and Machine Learning in Surgery: A Comprehensive Literature Review
    Dagli, Mert Marcel
    Rajesh, Aashish
    Asaad, Malke
    Butler, Charles E.
    [J]. AMERICAN SURGEON, 2023, 89 (05) : 1980 - 1988
  • [23] Review of Machine Learning and Artificial Intelligence (ML/AI) for the Pediatric Neurologist
    Gombolay, Grace Y.
    Gopalan, Nakul
    Bernasconi, Andrea
    Nabbout, Rima
    Megerian, Jonathan T.
    Siegel, Benjamin
    Hallman-Cooper, Jamika
    Bhalla, Sonam
    Gombolay, Matthew C.
    [J]. PEDIATRIC NEUROLOGY, 2023, 141 : 42 - 51
  • [24] Artificial Intelligence and Machine Learning in Marketing: A Bibliometric Review
    Kushwaha, Pooja S.
    Badhera, Usha
    [J]. PACIFIC BUSINESS REVIEW INTERNATIONAL, 2023, 15 (05): : 55 - 66
  • [25] Artificial Intelligence and Machine Learning in Electrophysiology—a Short Review
    Shahrukh Khan
    Chanho Lim
    Humza Chaudhry
    Ala Assaf
    Eoin Donnelan
    Nassir Marrouche
    Omar Kreidieh
    [J]. Current Treatment Options in Cardiovascular Medicine, 2023, 25 : 443 - 460
  • [26] Introduction to artificial intelligence and machine learning into orthodontics: A review
    Kondody, Rony T.
    Patil, Aishwarya
    Devika, G.
    Jose, Angeline
    Kumar, Ashwath
    Nair, Saumya
    [J]. APOS TRENDS IN ORTHODONTICS, 2022, 12 (03) : 214 - 220
  • [27] Artificial intelligence and machine learning in finance: A bibliometric review
    Ahmed, Shamima
    Alshater, Muneer M.
    El Ammari, Anis
    Hammami, Helmi
    [J]. RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2022, 61
  • [28] Application of machine learning and artificial intelligence in the diagnosis and classification of polycystic ovarian syndrome: a systematic review
    Barrera, Francisco J.
    Brown, Ethan D. L.
    Rojo, Amanda
    Obeso, Javier
    Plata, Hiram
    Lincango, Eddy P.
    Terry, Nancy
    Rodriguez-Gutierrez, Rene
    Hall, Janet E.
    Shekhar, Skand
    [J]. FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [29] A Systematic Short Review of Machine Learning and Artificial Intelligence Integration in Current Project Management Techniques
    Sarwar, Hasan
    Rahman, Mizanur
    [J]. 2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 262 - 270
  • [30] Chatbot for Health Care and Oncology Applications Using Artificial Intelligence and Machine Learning: Systematic Review
    Xu, Lu
    Sanders, Leslie
    Li, Kay
    Chow, James C. L.
    [J]. JMIR CANCER, 2021, 7 (04):