Artificial Intelligence and Machine Learning inNeuroregeneration: A Systematic Review

被引:2
作者
Mulpuri, Rajendra P. [1 ]
Konda, Nikhitha [2 ]
Gadde, Sai T. [1 ]
Amalakanti, Sridhar [1 ]
Valiveti, Sindhu Chowdary [3 ]
机构
[1] All India Inst Med Sci, Gen Med, Mangalagiri, India
[2] Alluri Sitaramaraju Acad Med Sci, Internal Med, Eluru, India
[3] Sri Padmavathi Med Coll Women, Intern Gen Med, Tirupati, India
关键词
regenerative medicine; neural networks; deep neural networks; machine learning; artificial intelligence; neuroregeneration; MIXED METHODS; INTEGRATION; QUALITY;
D O I
10.7759/cureus.61400
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) and machine learning (ML) show promise in various medical domains,including medical imaging, precise diagnoses, and pharmaceutical research. In neuroscience andneurosurgery, AI/ML advancements enhance brain-computer interfaces, neuroprosthetics, andsurgical planning. They are poised to revolutionize neuroregeneration by unraveling the nervoussystem's complexities. However, research on AI/ML in neuroregeneration is fragmented,necessitating a comprehensive review. Adhering to Preferred Reporting Items for SystematicReviews and Meta-Analyses (PRISMA) recommendations, 19 English-language papers focusing onAI/ML in neuroregeneration were selected from a total of 247. Two researchers independentlyconducted data extraction and quality assessment using the Mixed Methods Appraisal Tool (MMAT)2018. Eight studies were deemed high quality, 10 moderate, and four low. Primary goals includeddiagnosing neurological disorders (35%), robotic rehabilitation (18%), and drug discovery (12%each). Methods ranged from analyzing imaging data (24%) to animal models (24%) and electronichealth records (12%). Deep learning accounted for 41% of AI/ML techniques, while standard MLalgorithms constituted 29%. The review underscores the growing interest in AI/ML forneuroregenerative medicine, with increasing publications. These technologies aid in diagnosingdiseases and facilitating functional recovery through robotics and targeted stimulation. AI-drivendrug discovery holds promise for identifying neuroregenerative therapies. Nonetheless, addressingexisting limitations remains crucial in this rapidly evolving field.
引用
收藏
页数:10
相关论文
共 60 条
[1]  
Abbaoui Wafae, 2024, Informatics in Medicine Unlocked, V46, DOI [10.1016/j.imu.2024.101475, 10.1016/j.imu.2024.101475]
[2]   Rational Polypharmacology: Systematically Identifying and Engaging Multiple Drug Targets To Promote Axon Growth [J].
Al-Ali, Hassan ;
Lee, Do-Hun ;
Danzi, Matt C. ;
Nassif, Houssam ;
Gautam, Prson ;
Wennerberg, Krister ;
Zuercher, Bill ;
Drewry, David H. ;
Lee, Jae K. ;
Lemmon, Vance P. ;
Bixby, John L. .
ACS CHEMICAL BIOLOGY, 2015, 10 (08) :1939-1951
[3]   A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion [J].
Albahri, A. S. ;
Duhaim, Ali M. ;
Fadhel, Mohammed A. ;
Alnoor, Alhamzah ;
Baqer, Noor S. ;
Alzubaidi, Laith ;
Albahri, O. S. ;
Alamoodi, A. H. ;
Bai, Jinshuai ;
Salhi, Asma ;
Santamaria, Jose ;
Ouyang, Chun ;
Gupta, Ashish ;
Gu, Yuantong ;
Deveci, Muhammet .
INFORMATION FUSION, 2023, 96 :156-191
[4]  
Amorim P, 2021, International Journal of Digital Health, V1, P10, DOI [10.29337/ijdh.34, 10.29337/ijdh.34, DOI 10.29337/IJDH.34, 10.29337/IJDH.34]
[5]  
Anopas D, 2018, IEEE ENG MED BIO, P4205, DOI 10.1109/EMBC.2018.8513316
[6]   A conceptual framework for machine learning algorithm selection for predictive maintenance [J].
Arena, Simone ;
Florian, Eleonora ;
Sgarbossa, Fabio ;
Solvsberg, Endre ;
Zennaro, Ilenia .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
[7]  
Avula VCR, 2023, Arch. Ment. Health, V10, P4103, DOI DOI 10.4103/AMH.AMH16723
[8]   Machine Learning First Response to COVID-19: A Systematic Literature Review of Clinical Decision Assistance Approaches during Pandemic Years from 2020 to 2022 [J].
Badiola-Zabala, Goizalde ;
Lopez-Guede, Jose Manuel ;
Estevez, Julian ;
Grana, Manuel .
ELECTRONICS, 2024, 13 (06)
[9]  
Beculic Hakija, 2024, Med Glas (Zenica), V21, DOI [10.17392/1661-23, 10.17392/1661-23]
[10]   Standardizing digital biobanks: integrating imaging, genomic, and clinical data for precision medicine [J].
Brancato, Valentina ;
Esposito, Giuseppina ;
Coppola, Luigi ;
Cavaliere, Carlo ;
Mirabelli, Peppino ;
Scapicchio, Camilla ;
Borgheresi, Rita ;
Neri, Emanuele ;
Salvatore, Marco ;
Aiello, Marco .
JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)