Evaluating Task-Specific Augmentations in Self-Supervised Pre-Training for 3D Medical Image Analysis

被引:1
|
作者
Claessens, C. H. B. [1 ]
Hamm, J. J. M. [2 ]
Viviers, C. G. A. [1 ]
Nederend, J. [3 ]
Grunhagen, D. J. [2 ]
Tanis, P. J. [2 ]
de With, P. H. N. [1 ]
van der Sommen, F. [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
[2] Erasmus MC, Rotterdam, Netherlands
[3] Catharina Hosp, Eindhoven, Netherlands
来源
MEDICAL IMAGING 2024: IMAGE PROCESSING | 2024年 / 12926卷
关键词
self-supervised learning; pre-training; medical imaging; three-dimensional; augmentations; self-distillation;
D O I
10.1117/12.3000850
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Self-supervised learning (SSL) has become a crucial approach for pre-training deep learning models in natural and medical image analysis. However, applying transformations designed for natural images to three-dimensional (3D) medical data poses challenges. This study explores the efficacy of specific augmentations in the context of self-supervised pre-training for volumetric medical images. A 3D non-contrastive framework is proposed for in-domain self-supervised pre-training on 3D gray-scale thorax CT data, incorporating four spatial and two intensity augmentations commonly used in 3D medical image analysis. The pre-trained models, adapted versions of ResNet-50 and Vision Transformer (ViT)-S, are evaluated on lung nodule classification and lung tumor segmentation tasks. The results indicate a significant impact of SSL, with a remarkable increase in AUC and DSC as compared to training from scratch. For classification, random scalings and random rotations play a fundamental role in achieving higher downstream performance, while intensity augmentations show limited contribution and may even degrade performance. For segmentation, random intensity histogram shifting enhances robustness, while other augmentations have marginal or negative impacts. These findings underscore the necessity of tailored data augmentations within SSL for medical imaging, emphasizing the importance of task-specific transformations for optimal model performance in complex 3D medical datasets.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] GMIM: Self-supervised pre-training for 3D medical image segmentation with adaptive and hierarchical masked image modeling
    Qi L.
    Jiang Z.
    Shi W.
    Qu F.
    Feng G.
    Computers in Biology and Medicine, 2024, 176
  • [2] PointVST: Self-Supervised Pre-Training for 3D Point Clouds via View-Specific Point-to-Image Translation
    Zhang, Qijian
    Hou, Junhui
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (10) : 6900 - 6912
  • [3] A Closer Look at Invariances in Self-supervised Pre-training for 3D Vision
    Li, Lanxiao
    Heizmann, Michael
    COMPUTER VISION - ECCV 2022, PT XXX, 2022, 13690 : 656 - 673
  • [4] A Unified Visual Information Preservation Framework for Self-supervised Pre-Training in Medical Image Analysis
    Zhou, Hong-Yu
    Lu, Chixiang
    Chen, Chaoqi
    Yang, Sibei
    Yu, Yizhou
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 8020 - 8035
  • [5] Self-supervised Pre-training of Text Recognizers
    Kiss, Martin
    Hradis, Michal
    DOCUMENT ANALYSIS AND RECOGNITION-ICDAR 2024, PT IV, 2024, 14807 : 218 - 235
  • [6] Self-Supervised Underwater Image Generation for Underwater Domain Pre-Training
    Wu, Zhiheng
    Wu, Zhengxing
    Chen, Xingyu
    Lu, Yue
    Yu, Junzhi
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [7] Self-supervised ECG pre-training
    Liu, Han
    Zhao, Zhenbo
    She, Qiang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [8] MULTI-TASK SELF-SUPERVISED PRE-TRAINING FOR MUSIC CLASSIFICATION
    Wu, Ho-Hsiang
    Kao, Chieh-Chi
    Tang, Qingming
    Sun, Ming
    McFee, Brian
    Bello, Juan Pablo
    Wang, Chao
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 556 - 560
  • [9] Self-supervised Pre-training for Nuclei Segmentation
    Haq, Mohammad Minhazul
    Huang, Junzhou
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 303 - 313
  • [10] Self-Supervised Pre-Training for 3-D Roof Reconstruction on LiDAR Data
    Yang, Hongxin
    Huang, Shangfeng
    Wang, Ruisheng
    Wang, Xin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5