Bioreversible Anionic Cloaking Enables Intracellular Protein Delivery with Ionizable Lipid Nanoparticles

被引:5
作者
Alamgir, Azmain [1 ]
Ghosal, Souvik [2 ]
DeLisa, Matthew P. [1 ,3 ]
Alabi, Christopher A. [1 ,2 ]
机构
[1] Cornell Univ, Robert F Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[3] Cornell Univ, Cornell Inst Biotechnol, Ithaca, NY 14853 USA
关键词
CYTOSOLIC DELIVERY; CELLS;
D O I
10.1021/acscentsci.4c00071
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Protein-based therapeutics comprise a rapidly growing subset of pharmaceuticals, but enabling their delivery into cells for intracellular applications has been a longstanding challenge. To overcome the delivery barrier, we explored a reversible, bioconjugation-based approach to modify the surface charge of protein cargos with an anionic "cloak" to facilitate electrostatic complexation and delivery with lipid nanoparticle (LNP) formulations. We demonstrate that the conjugation of lysine-reactive sulfonated compounds can allow for the delivery of various protein cargos using FDA-approved LNP formulations of the ionizable cationic lipid DLin-MC3-DMA (MC3). We apply this strategy to functionally deliver RNase A for cancer cell killing as well as a full-length antibody to inhibit oncogenic beta-catenin signaling. Further, we show that LNPs encapsulating cloaked fluorescent proteins distribute to major organs in mice following systemic administration. Overall, our results point toward a generalizable platform that can be employed for intracellular delivery of a wide range of protein cargos.
引用
收藏
页码:1179 / 1190
页数:12
相关论文
共 47 条
[1]   The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J].
Akinc, Akin ;
Maier, Martin A. ;
Manoharan, Muthiah ;
Fitzgerald, Kevin ;
Jayaraman, Muthusamy ;
Barros, Scott ;
Ansell, Steven ;
Du, Xinyao ;
Hope, Michael J. ;
Madden, Thomas D. ;
Mui, Barbara L. ;
Semple, Sean C. ;
Tam, Ying K. ;
Ciufolini, Marco ;
Witzigmann, Dominik ;
Kulkarni, Jayesh A. ;
van der Meel, Roy ;
Cullis, Pieter R. .
NATURE NANOTECHNOLOGY, 2019, 14 (12) :1084-1087
[2]  
Akishiba M, 2017, NAT CHEM, V9, P751, DOI [10.1038/NCHEM.2779, 10.1038/nchem.2779]
[3]   Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins [J].
Banskota, Samagya ;
Raguram, Aditya ;
Suh, Susie ;
Du, Samuel W. ;
Davis, Jessie R. ;
Choi, Elliot H. ;
Wang, Xiao ;
Nielsen, Sarah C. ;
Newby, Gregory A. ;
Randolph, Peyton B. ;
Osborn, Mark J. ;
Musunuru, Kiran ;
Palczewski, Krzysztof ;
Liu, David R. .
CELL, 2022, 185 (02) :250-+
[4]   The once and future gene therapy [J].
Bulaklak, Karen ;
Gersbach, Charles A. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[5]   Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing [J].
Cheng, Qiang ;
Wei, Tuo ;
Farbiak, Lukas ;
Johnson, Lindsay T. ;
Dilliard, Sean A. ;
Siegwart, Daniel J. .
NATURE NANOTECHNOLOGY, 2020, 15 (04) :313-+
[6]   Gene therapy: progress and predictions [J].
Collins, Mary ;
Thrasher, Adrian .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2015, 282 (1821)
[7]  
Colwill K, 2011, NAT METHODS, V8, P551, DOI [10.1038/nmeth.1607, 10.1038/NMETH.1607]
[8]   On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles [J].
Dilliard, Sean A. ;
Cheng, Qiang ;
Siegwart, Daniel J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (52)
[9]   Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies [J].
Dutta, Kingshuk ;
Kanjilal, Pintu ;
Das, Ritam ;
Thayumanavan, Sankaran .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (04) :1821-1830
[10]   Promises and Pitfalls of Intracellular Delivery of Proteins [J].
Fu, Ailing ;
Tang, Rui ;
Hardie, Joseph ;
Farkas, Michelle E. ;
Rotello, Vincent M. .
BIOCONJUGATE CHEMISTRY, 2014, 25 (09) :1602-1608