Evaluation of 3D T1-weighted spoiled gradient echo MR image quality using artificial intelligence image reconstruction techniques in the pediatric brain

被引:1
作者
Nagaraj, Usha D. [1 ,2 ]
Dillman, Jonathan R. [1 ,2 ]
Tkach, Jean A. [1 ,2 ]
Greer, Joshua S. [1 ,3 ]
Leach, James L. [1 ,2 ]
机构
[1] Cincinnati Childrens Hosp Med Ctr, Dept Radiol & Med Imaging, 3333 Burnet Ave, Cincinnati, OH 45229 USA
[2] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati, OH 45267 USA
[3] Philips Healthcare, Cincinnati, OH USA
关键词
Artificial intelligence; Brain MRI; Pediatrics; Compressed sensing;
D O I
10.1007/s00234-024-03417-9
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose To assess image quality and diagnostic confidence of 3D T1-weighted spoiled gradient echo (SPGR) MRI using artificial intelligence (AI) reconstruction. Materials and methods This prospective, IRB-approved study enrolled 50 pediatric patients (mean age = 11.8 +/- 3.1 years) undergoing clinical brain MRI. In addition to standard of care (SOC) compressed SENSE (CS = 2.5), 3D T1-weighted SPGR images were obtained with higher CS acceleration factors (5 and 8) to evaluate the ability of AI reconstruction to improve image quality and reduce scan time. Images were reviewed independently on dedicated research PACS workstations by two neuroradiologists. Quantitative analysis of signal intensities to calculate apparent grey and white matter signal to noise (aSNR) and grey-white matter apparent contrast to noise ratios (aCNR) was performed. Results AI improved overall image quality compared to standard CS reconstruction in 35% (35/100) of evaluations in CS = 2.5 (average scan time = 221 +/- 6.9 s), 100% (46/46) of CS = 5 (average scan time = 113.3 +/- 4.6 s) and 94% (47/50) of CS = 8 (average scan time = 74.1 +/- 0.01 s). Quantitative analysis revealed significantly higher grey matter aSNR, white matter aSNR and grey-white matter aCNR with AI reconstruction compared to standard reconstruction for CS 5 and 8 (all p-values < 0.001), however not for CS 2.5. Conclusions AI reconstruction improved overall image quality and gray-white matter qualitative and quantitative aSNR and aCNR in highly accelerated (CS = 5 and 8) 3D T1W SPGR images in the majority of pediatric patients.
引用
收藏
页码:1849 / 1857
页数:9
相关论文
共 26 条
[1]  
American College of Radiology, 2019, ACR-ASNR-SPR Practice Parameter for the Performance of Computed Tomography (CT) of the Extracranial Head and Neck
[2]   T2 Turbo Spin Echo With Compressed Sensing and Propeller Acquisition (Sampling k-Space by Utilizing Rotating Blades) for Fast and Motion Robust Prostate MRI Comparison With Conventional Acquisition [J].
Bischoff, Leon M. ;
Katemann, Christoph ;
Isaak, Alexander ;
Mesropyan, Narine ;
Wichtmann, Barbara ;
Kravchenko, Dmitrij ;
Endler, Christoph ;
Kuetting, Daniel ;
Pieper, Claus C. ;
Ellinger, Joerg ;
Weber, Oliver ;
Attenberger, Ulrike ;
Luetkens, Julian A. .
INVESTIGATIVE RADIOLOGY, 2023, 58 (03) :209-215
[3]   An artificial intelligence-accelerated 2-minute multi-shot echo planar imaging protocol for comprehensive high-quality clinical brain imaging [J].
Clifford, Bryan ;
Conklin, John ;
Huang, Susie Y. ;
Feiweier, Thorsten ;
Hosseini, Zahra ;
Goncalves Filho, Augusto Lio M. ;
Tabari, Azadeh ;
Demir, Serdest ;
Lo, Wei-Ching ;
Longo, Maria Gabriela Figueiro ;
Lev, Michael ;
Schaefer, Pam ;
Rapalino, Otto ;
Setsompop, Kawin ;
Bilgic, Berkin ;
Cauley, Stephen .
MAGNETIC RESONANCE IN MEDICINE, 2022, 87 (05) :2453-2463
[4]   Conventional and Deep-Learning-Based Image Reconstructions of Undersampled K-Space Data of the Lumbar Spine Using Compressed Sensing in MRI: A Comparative Study on 20 Subjects [J].
Fervers, Philipp ;
Zaeske, Charlotte ;
Rauen, Philip ;
Iuga, Andra-Iza ;
Kottlors, Jonathan ;
Persigehl, Thorsten ;
Sonnabend, Kristina ;
Weiss, Kilian ;
Bratke, Grischa .
DIAGNOSTICS, 2023, 13 (03)
[5]   Improvement of image quality in diffusion-weighted imaging with model-based deep learning reconstruction for evaluations of the head and neck [J].
Fujima, Noriyuki ;
Nakagawa, Junichi ;
Kameda, Hiroyuki ;
Ikebe, Yohei ;
Harada, Taisuke ;
Shimizu, Yukie ;
Tsushima, Nayuta ;
Kano, Satoshi ;
Homma, Akihiro ;
Kwon, Jihun ;
Yoneyama, Masami ;
Kudo, Kohsuke .
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2024, 37 (03) :439-447
[6]   Image Quality and Diagnostic Performance of Accelerated Shoulder MRI With Deep Learning-Based Reconstruction [J].
Hahn, Seok ;
Yi, Jisook ;
Lee, Ho-Joon ;
Lee, Yedaun ;
Lim, Yun-Jung ;
Bang, Jin-Young ;
Kim, Hyunwoong ;
Lee, Joonsung .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2022, 218 (03) :506-516
[7]   Prospectively Accelerated T2-Weighted Imaging of the Prostate by Combining Compressed SENSE and Deep Learning in Patients with Histologically Proven Prostate Cancer [J].
Harder, Felix N. ;
Weiss, Kilian ;
Amiel, Thomas ;
Peeters, Johannes M. ;
Tauber, Robert ;
Ziegelmayer, Sebastian ;
Burian, Egon ;
Makowski, Marcus R. ;
Sauter, Andreas P. ;
Gschwend, Juergen E. ;
Karampinos, Dimitrios C. ;
Braren, Rickmer F. .
CANCERS, 2022, 14 (23)
[8]   Noise reduction in diffusion weighted MRI of the pancreas using an L1-regularized iterative SENSE reconstruction [J].
Kamal, Omar ;
McTavish, Sean ;
Harder, Felix N. ;
Van, Anh T. ;
Peeters, Johannes M. ;
Weiss, Kilian ;
Makowski, Marcus R. ;
Karampinos, Dimitrios C. ;
Braren, Rickmer F. .
MAGNETIC RESONANCE IMAGING, 2022, 87 :1-6
[9]   The effect of a post-scan processing denoising system on image quality and morphometric analysis [J].
Kanemaru, Noriko ;
Takao, Hidemasa ;
Amemiya, Shiori ;
Abe, Osamu .
JOURNAL OF NEURORADIOLOGY, 2022, 49 (02) :205-212
[10]   Accelerated Synthetic MRI with Deep Learning-Based Reconstruction for Pediatric Neuroimaging [J].
Kim, E. ;
Cho, H. -H. ;
Cho, S. H. ;
Park, B. ;
Hong, J. ;
Shin, K. M. ;
Hwang, M. J. ;
You, S. K. ;
Lee, S. M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2022, 43 (11) :1653-1659