Automatic quantification of tumor-stroma ratio as a prognostic marker for pancreatic cancer

被引:2
作者
Vendittelli, Pierpaolo [1 ]
Bokhorst, John-Melle [1 ]
Smeets, Esther M. M. [1 ]
Kryklyva, Valentyna [1 ]
Brosens, Lodewijk A. A. [1 ]
Verbeke, Caroline [2 ]
Litjens, Geert [1 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Pathol, Nijmegen, Netherlands
[2] Oslo Univ Hosp, Dept Pathol, Oslo, Norway
来源
PLOS ONE | 2024年 / 19卷 / 05期
关键词
SURVIVAL; ADENOCARCINOMA; EPIDEMIOLOGY;
D O I
10.1371/journal.pone.0301969
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose This study aims to introduce an innovative multi-step pipeline for automatic tumor-stroma ratio (TSR) quantification as a potential prognostic marker for pancreatic cancer, addressing the limitations of existing staging systems and the lack of commonly used prognostic biomarkers.Methods The proposed approach involves a deep-learning-based method for the automatic segmentation of tumor epithelial cells, tumor bulk, and stroma from whole-slide images (WSIs). Models were trained using five-fold cross-validation and evaluated on an independent external test set. TSR was computed based on the segmented components. Additionally, TSR's predictive value for six-month survival on the independent external dataset was assessed.Results Median Dice (inter-quartile range (IQR)) of 0.751(0.15) and 0.726(0.25) for tumor epithelium segmentation on internal and external test sets, respectively. Median Dice of 0.76(0.11) and 0.863(0.17) for tumor bulk segmentation on internal and external test sets, respectively. TSR was evaluated as an independent prognostic marker, demonstrating a cross-validation AUC of 0.61 +/- 0.12 for predicting six-month survival on the external dataset.Conclusion Our pipeline for automatic TSR quantification offers promising potential as a prognostic marker for pancreatic cancer. The results underscore the feasibility of computational biomarker discovery in enhancing patient outcome prediction, thus contributing to personalized patient management.
引用
收藏
页数:13
相关论文
共 24 条
[1]   Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks [J].
Bandi, Peter ;
Balkenhol, Maschenka ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
PEERJ, 2019, 7
[2]  
Bokhorst JM, 2021, Arxiv, DOI arXiv:2109.07892
[3]   Pan-cancer integrative histology-genomic analysis via multimodal deep learning [J].
Chen, Richard J. ;
Lu, Ming Y. ;
Williamson, Drew F. K. ;
Chen, Tiffany Y. ;
Lipkova, Jana ;
Noor, Zahra ;
Shaban, Muhammad ;
Shady, Maha ;
Williams, Mane ;
Joo, Bumjin ;
Mahmood, Faisal .
CANCER CELL, 2022, 40 (08) :865-+
[4]   The American Joint Committee on Cancer: the 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM [J].
Edge, Stephen B. ;
Compton, Carolyn C. .
ANNALS OF SURGICAL ONCOLOGY, 2010, 17 (06) :1471-1474
[5]   Automatic Pancreatic Ductal Adenocarcinoma Detection in Whole Slide Images Using Deep Convolutional Neural Networks [J].
Fu, Hao ;
Mi, Weiming ;
Pan, Boju ;
Guo, Yucheng ;
Li, Junjie ;
Xu, Rongyan ;
Zheng, Jie ;
Zou, Chunli ;
Zhang, Tao ;
Liang, Zhiyong ;
Zou, Junzhong ;
Zou, Hao .
FRONTIERS IN ONCOLOGY, 2021, 11
[6]   Automatic multi-tissue segmentation in pancreatic pathological images with selected multi-scale attention network [J].
Gao, Enting ;
Jiang, Hui ;
Zhou, Zhibang ;
Yang, Changxing ;
Chen, Muyang ;
Zhu, Weifang ;
Shi, Fei ;
Chen, Xinjian ;
Zheng, Jian ;
Bian, Yun ;
Xiang, Dehui .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
[7]   Computer aided quantification of intratumoral stroma yields an independent prognosticator in rectal cancer [J].
Geessink, Oscar G. F. ;
Baidoshvili, Alexi ;
Klaase, Joost M. ;
Bejnordi, Babak Ehteshami ;
Litjens, Geert J. S. ;
van Pelt, Gabi W. ;
Mesker, Wilma E. ;
Nagtegaal, Iris D. ;
Ciompi, Francesco ;
van der Laak, Jeroen A. W. M. .
CELLULAR ONCOLOGY, 2019, 42 (03) :331-341
[8]   Tenascin C, Fibronectin, and Tumor-Stroma Ratio in Pancreatic Ductal Adenocarcinoma [J].
Leppaenen, Joni ;
Lindholm, Ville ;
Isohookana, Joel ;
Haapasaari, Kirsi-Maria ;
Karihtala, Peeter ;
Lehenkari, Petri P. ;
Saarnio, Juha ;
Kauppila, Joonas H. ;
Karttunen, Tuomo J. ;
Helminen, Olli ;
Huhta, Heikki .
PANCREAS, 2019, 48 (01) :43-48
[9]   Pros and Cons: High Proportion of Stromal Component Indicates Better Prognosis in Patients With Pancreatic Ductal Adenocarcinoma-A Research Based on the Evaluation of Whole-Mount Histological Slides [J].
Li, Bo ;
Wang, Yang ;
Jiang, Hui ;
Li, Baoming ;
Shi, Xiaohan ;
Gao, Suizhi ;
Ni, Canrong ;
Zhang, Zelin ;
Guo, Shiwei ;
Xu, Jun ;
Jin, Gang .
FRONTIERS IN ONCOLOGY, 2020, 10
[10]   Patch-Based Nonlinear Image Registration for Gigapixel Whole Slide Images [J].
Lotz, J. ;
Olesch, J. ;
Mueller, B. ;
Polzin, T. ;
Galuschka, P. ;
Lotz, J. M. ;
Heldmann, S. ;
Laue, H. ;
Gonzalez-Vallinas, M. ;
Warth, A. ;
Lahrmann, B. ;
Grabe, N. ;
Sedlaczek, O. ;
Breuhahn, K. ;
Modersitzki, J. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (09) :1812-1819