Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer

被引:18
作者
McCaffrey, Christine [1 ]
Jahangir, Chowdhury [1 ]
Murphy, Clodagh [1 ]
Burke, Caoimbhe [1 ]
Gallagher, William M. [1 ,3 ]
Rahman, Arman [2 ]
机构
[1] Univ Coll Dublin, UCD Conway Inst, UCD Sch Biomol & Biomed Sci, Dublin, Ireland
[2] Univ Coll Dublin, UCD Conway Inst, UCD Sch Med, Dublin, Ireland
[3] Univ Coll Dublin, UCD Sch Biomol & Biomed Sci, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
Algorithm; artificial intelligence; breast cancer; deep learning; digital pathology; histopathology; image-biomarker; machine learning; TUMOR-INFILTRATING LYMPHOCYTES; PATHOLOGICAL COMPLETE RESPONSE; NEOADJUVANT CHEMOTHERAPY; SOLID TUMORS; STANDARDIZED METHOD; SPATIAL-ANALYSIS; IMAGE-ANALYSIS; RECURRENCE; TILS; ORGANIZATION;
D O I
10.1080/14737159.2024.2346545
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
IntroductionHistological images contain phenotypic information predictive of patient outcomes. Due to the heavy workload of pathologists, the time-consuming nature of quantitatively assessing histological features, and human eye limitations to recognize spatial patterns, manually extracting prognostic information in routine pathological workflows remains challenging. Digital pathology has facilitated the mining and quantification of these features utilizing whole-slide image (WSI) scanners and artificial intelligence (AI) algorithms. AI algorithms to identify image-based biomarkers from the tumor microenvironment (TME) have the potential to revolutionize the field of oncology, reducing delays between diagnosis and prognosis determination, allowing for rapid stratification of patients and prescription of optimal treatment regimes, thereby improving patient outcomes.Areas CoveredIn this review, the authors discuss how AI algorithms and digital pathology can predict breast cancer patient prognosis and treatment outcomes using image-based biomarkers, along with the challenges of adopting this technology in clinical settings.Expert OpinionThe integration of AI and digital pathology presents significant potential for analyzing the TME and its diagnostic, prognostic, and predictive value in breast cancer patients. Widespread clinical adoption of AI faces ethical, regulatory, and technical challenges, although prospective trials may offer reassurance and promote uptake, ultimately improving patient outcomes by reducing diagnosis-to-prognosis delivery delays.
引用
收藏
页码:363 / 377
页数:15
相关论文
共 107 条
[61]   AI-based pathology predicts origins for cancers of unknown primary [J].
Lu, Ming Y. ;
Chen, Tiffany Y. ;
Williamson, Drew F. K. ;
Zhao, Melissa ;
Shady, Maha ;
Lipkova, Jana ;
Mahmood, Faisal .
NATURE, 2021, 594 (7861) :106-+
[62]   Genomic Organization at Large Scales (GOALS) within Nuclei and Cell Sociology for Predicting Lung Cancer Outcomes [J].
Macaulay, C. ;
Guillaud, M. ;
Enfield, K. ;
Xu, Z. ;
Lam, S. ;
Lam, W. ;
Gallagher, P. .
JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (10) :S952-S952
[63]   Quantification of large scale DNA organization for predicting prostate cancer recurrence [J].
MacAulay, Calum ;
Keyes, Mira ;
Hayes, Malcolm ;
Lo, Andrea ;
Wang, Gang ;
Guillaud, Martial ;
Gleave, Martin ;
Fazli, Laden ;
Korbelik, Jagoda ;
Collins, Colin ;
Keyes, Sarah ;
Palcic, Branko .
CYTOMETRY PART A, 2017, 91A (12) :1164-1174
[64]   Artificial Intelligence-Based Mitosis Detection in Breast Cancer Histopathology Images Using Faster R-CNN and Deep CNNs [J].
Mahmood, Tahir ;
Arsalan, Muhammad ;
Owais, Muhammad ;
Lee, Min Beom ;
Park, Kang Ryoung .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (03)
[65]   Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma [J].
Maibach, Fabienne ;
Sadozai, Hassan ;
Seyed Jafari, S. Morteza ;
Hunger, Robert E. ;
Schenk, Mirjam .
FRONTIERS IN IMMUNOLOGY, 2020, 11
[66]   Evaluation of tumour infiltrating lymphocytes in luminal breast cancer using artificial intelligence [J].
Makhlouf, Shorouk ;
Wahab, Noorul ;
Toss, Michael ;
Ibrahim, Asmaa ;
Lashen, Ayat G. ;
Atallah, Nehal M. ;
Ghannam, Suzan ;
Jahanifar, Mostafa ;
Lu, Wenqi ;
Graham, Simon ;
Mongan, Nigel P. ;
Bilal, Mohsin ;
Bhalerao, Abhir ;
Snead, David ;
Minhas, Fayyaz ;
Raza, Shan E. Ahmed ;
Rajpoot, Nasir ;
Rakha, Emad .
BRITISH JOURNAL OF CANCER, 2023, 129 (11) :1747-1758
[67]   Application of Artificial Intelligence Techniques to Predict Risk of Recurrence of Breast Cancer: A Systematic Review [J].
Mazo, Claudia ;
Aura, Claudia ;
Rahman, Arman ;
Gallagher, William M. ;
Mooney, Catherine .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (09)
[68]   The prognostic impact of the tumour stroma fraction: A machine learning-based analysis in 16 human solid tumour types [J].
Micke, Patrick ;
Strell, Carina ;
Mattsson, Johanna ;
Martin-Bernabe, Alfonso ;
Brunnstrom, Hans ;
Huvila, Jutta ;
Sund, Malin ;
Warnberg, Fredrik ;
Ponten, Fredrik ;
Glimelius, Bengt ;
Hrynchyk, Ina ;
Mauchanski, Siarhei ;
Khelashvili, Salome ;
Garcia-Vicien, Gemma ;
Mollevi, David G. ;
Edqvist, Per-Henrik ;
Reilly, Aine O. ;
Corvigno, Sara ;
Dahlstrand, Hanna ;
Botling, Johan ;
Segersten, Ulrika ;
Krzyzanowska, Agnieszka ;
Bjartell, Anders ;
Elebro, Jacob ;
Heby, Margareta ;
Lundgren, Sebastian ;
Hedner, Charlotta ;
Borg, David ;
Brandstedt, Jenny ;
Sartor, Hanna ;
Malmstrom, Per-Uno ;
Johansson, Martin ;
Nodin, Bjorn ;
Backman, Max ;
Lindskog, Cecilia ;
Jirstrom, Karin ;
Mezheyeuski, Artur .
EBIOMEDICINE, 2021, 65
[69]   Tumour Stroma Ratio Assessment Using Digital Image Analysis Predicts Survival in Triple Negative and Luminal Breast Cancer [J].
Millar, Ewan K. A. ;
Browne, Lois H. ;
Beretov, Julia ;
Lee, Kirsty ;
Lynch, Jodi ;
Swarbrick, Alexander ;
Graham, Peter H. .
CANCERS, 2020, 12 (12) :1-14
[70]   Predicting response to primary chemotherapy: gene expression profiling of paraffin-embedded core biopsy tissue [J].
Mina, Lida ;
Soule, Sharon E. ;
Badve, Sunil ;
Baehner, Fredrick L. ;
Baker, Joffre ;
Cronin, Maureen ;
Watson, Drew ;
Liu, Mei-Lan ;
Sledge, George W., Jr. ;
Shak, Steve ;
Miller, Kathy D. .
BREAST CANCER RESEARCH AND TREATMENT, 2007, 103 (02) :197-208