Artificial intelligence in digital histopathology for predicting patient prognosis and treatment efficacy in breast cancer

被引:18
作者
McCaffrey, Christine [1 ]
Jahangir, Chowdhury [1 ]
Murphy, Clodagh [1 ]
Burke, Caoimbhe [1 ]
Gallagher, William M. [1 ,3 ]
Rahman, Arman [2 ]
机构
[1] Univ Coll Dublin, UCD Conway Inst, UCD Sch Biomol & Biomed Sci, Dublin, Ireland
[2] Univ Coll Dublin, UCD Conway Inst, UCD Sch Med, Dublin, Ireland
[3] Univ Coll Dublin, UCD Sch Biomol & Biomed Sci, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
Algorithm; artificial intelligence; breast cancer; deep learning; digital pathology; histopathology; image-biomarker; machine learning; TUMOR-INFILTRATING LYMPHOCYTES; PATHOLOGICAL COMPLETE RESPONSE; NEOADJUVANT CHEMOTHERAPY; SOLID TUMORS; STANDARDIZED METHOD; SPATIAL-ANALYSIS; IMAGE-ANALYSIS; RECURRENCE; TILS; ORGANIZATION;
D O I
10.1080/14737159.2024.2346545
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
IntroductionHistological images contain phenotypic information predictive of patient outcomes. Due to the heavy workload of pathologists, the time-consuming nature of quantitatively assessing histological features, and human eye limitations to recognize spatial patterns, manually extracting prognostic information in routine pathological workflows remains challenging. Digital pathology has facilitated the mining and quantification of these features utilizing whole-slide image (WSI) scanners and artificial intelligence (AI) algorithms. AI algorithms to identify image-based biomarkers from the tumor microenvironment (TME) have the potential to revolutionize the field of oncology, reducing delays between diagnosis and prognosis determination, allowing for rapid stratification of patients and prescription of optimal treatment regimes, thereby improving patient outcomes.Areas CoveredIn this review, the authors discuss how AI algorithms and digital pathology can predict breast cancer patient prognosis and treatment outcomes using image-based biomarkers, along with the challenges of adopting this technology in clinical settings.Expert OpinionThe integration of AI and digital pathology presents significant potential for analyzing the TME and its diagnostic, prognostic, and predictive value in breast cancer patients. Widespread clinical adoption of AI faces ethical, regulatory, and technical challenges, although prospective trials may offer reassurance and promote uptake, ultimately improving patient outcomes by reducing diagnosis-to-prognosis delivery delays.
引用
收藏
页码:363 / 377
页数:15
相关论文
共 107 条
[41]   Relevance of Spatial Heterogeneity of Immune Infiltration for Predicting Risk of Recurrence After Endocrine Therapy of ER plus Breast Cancer [J].
Heindl, Andreas ;
Sestak, Ivana ;
Naidoo, Kalnisha ;
Cuzick, Jack ;
Dowsett, Mitchell ;
Yuan, Yinyin .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2018, 110 (02) :166-175
[42]   Assessing Tumor-infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method From the International Immunooncology Biomarkers Working Group: Part 1: Assessing the Host Immune Response, TILs in Invasive Breast Carcinoma and Ductal Carcinoma In Situ, Metastatic Tumor Deposits and Areas for Further Research [J].
Hendry, Shona ;
Salgado, Roberto ;
Gevaert, Thomas ;
Russell, Prudence A. ;
John, Tom ;
Thapa, Bibhusal ;
Christie, Michael ;
van de Vijver, Koen ;
Estrada, M. V ;
Gonzalez-Ericsson, Paula I ;
Sanders, Melinda ;
Solomon, Benjamin sss ;
Solinas, Cinzia ;
Van den Eynden, Gert G. G. M. ;
Allory, Yves ;
Preusser, Matthias ;
Hainfellner, Johannes ;
Pruneri, Giancarlo ;
Vingiani, Andrea ;
Demaria, Sandra ;
Symmans, Fraser ;
Nuciforo, Paolo ;
Comerma, Laura ;
Thompson, E. A. ;
Lakhani, Sunil ;
Kim, Seong-Rim ;
Schnitt, Stuart ;
Colpaert, Cecile ;
Sotiriou, Christos ;
Scherer, Stefan J. ;
Ignatiadis, Michail ;
Badve, Sunil ;
Pierce, Robert H. ;
Viale, Giuseppe ;
Sirtaine, Nicolas ;
Penault-Llorca, Frederique ;
Sugie, Tomohagu ;
Fineberg, Susan ;
Paik, Soonmyung ;
Srinivasan, Ashok ;
Richardson, Andrea ;
Wang, Yihong ;
Chmielik, Ewa ;
Brock, Jane ;
Johnson, Douglas B. ;
Balko, Justin ;
Wienert, Stephan ;
Bossuyt, Veerle ;
Michiels, Stefan ;
Ternes, Nils .
ADVANCES IN ANATOMIC PATHOLOGY, 2017, 24 (05) :235-251
[43]  
Hoang DT, 2022, J CLIN ONCOL, V40
[44]   Artificial intelligence reveals features associated with breast cancer neoadjuvant chemotherapy responses from multi-stain histopathologic images [J].
Huang, Zhi ;
Shao, Wei ;
Han, Zhi ;
Alkashash, Ahmad Mahmoud ;
de la Sancha, Carlo ;
Parwani, Anil V. V. ;
Nitta, Hiroaki ;
Hou, Yanjun ;
Wang, Tongxin ;
Salama, Paul ;
Rizkalla, Maher ;
Zhang, Jie ;
Huang, Kun ;
Li, Zaibo .
NPJ PRECISION ONCOLOGY, 2023, 7 (01)
[45]   Artificial Intelligence-Based Mitosis Scoring in Breast Cancer: Clinical Application [J].
Ibrahim, Asmaa ;
Jahanifar, Mostafa ;
Wahab, Noorul ;
Toss, Michael S. ;
Makhlouf, Shorouk ;
Atallah, Nehal ;
Lashen, Ayat G. ;
Katayama, Ayaka ;
Graham, Simon ;
Bilal, Mohsin ;
Bhalerao, Abhir ;
Raza, Shan E. Ahmed ;
Snead, David ;
Minhas, Fayyaz ;
Rajpoot, Nasir ;
Rakha, Emad .
MODERN PATHOLOGY, 2024, 37 (03)
[46]   Artificial intelligence in digital breast pathology: Techniques and applications [J].
Ibrahim, Asmaa ;
Gamble, Paul ;
Jaroensri, Ronnachai ;
Abdelsamea, Mohammed M. ;
Mermel, Craig H. ;
Chen, Po-Hsuan Cameron ;
Rakha, Emad A. .
BREAST, 2020, 49 :267-273
[47]   Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future [J].
Iqbal, Muhammad Javed ;
Javed, Zeeshan ;
Sadia, Haleema ;
Qureshi, Ijaz A. ;
Irshad, Asma ;
Ahmed, Rais ;
Malik, Kausar ;
Raza, Shahid ;
Abbas, Asif ;
Pezzani, Raffaele ;
Sharifi-Rad, Javad .
CANCER CELL INTERNATIONAL, 2021, 21 (01)
[48]   Digital Pathology: Advantages, Limitations and Emerging Perspectives [J].
Jahn, Stephan W. ;
Plass, Markus ;
Moinfar, Farid .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (11)
[49]   Machine learning and deep learning [J].
Janiesch, Christian ;
Zschech, Patrick ;
Heinrich, Kai .
ELECTRONIC MARKETS, 2021, 31 (03) :685-695
[50]   Deep learning models for histologic grading of breast cancer and association with disease prognosis [J].
Jaroensri, Ronnachai ;
Wulczyn, Ellery ;
Hegde, Narayan ;
Brown, Trissia ;
Flament-Auvigne, Isabelle ;
Tan, Fraser ;
Cai, Yuannan ;
Nagpal, Kunal ;
Rakha, Emad A. ;
Dabbs, David J. ;
Olson, Niels ;
Wren, James H. ;
Thompson, Elaine E. ;
Seetao, Erik ;
Robinson, Carrie ;
Miao, Melissa ;
Beckers, Fabien ;
Corrado, Greg S. ;
Peng, Lily H. ;
Mermel, Craig H. ;
Liu, Yun ;
Steiner, David F. ;
Chen, Po-Hsuan Cameron .
NPJ BREAST CANCER, 2022, 8 (01)