3D printing of fish-scale derived hydroxyapatite/chitosan/PCL scaffold for bone tissue engineering

被引:6
|
作者
Liu, Zhihua [1 ]
Shi, Jinnan [1 ]
Chen, Lingying [1 ]
He, Xiaoyu [1 ]
Weng, Yiyong [1 ]
Zhang, Xiaoyan [2 ]
Yang, Da-Peng [1 ,2 ,3 ]
Yu, Haiming [1 ]
机构
[1] Fujian Med Univ, Affiliated Hosp 2, Clin Med Coll 2, Dept Spinal Surg, Fuzhou 362000, Fujian, Peoples R China
[2] Quanzhou Normal Univ, Coll Chem Engn & Mat Sci, Key Lab Chem Mat & Green Nanotechnol, Quanzhou 362000, Fujian, Peoples R China
[3] Univ Hlth & Rehabil Sci, Sch Rehabil Sci & Engn, Qingdao Key Lab Mat Tissue Repair & Rehabil, Qingdao 266113, Peoples R China
关键词
Hydroxyapatite; Chitosan; Bone tissue repair; XRD;
D O I
10.1016/j.ijbiomac.2024.133172
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the field of bone tissue repair, the treatment of bone defects has always posed a significant challenge. In recent years, the advancement of bone tissue engineering and regenerative medicine has sparked great interest in the development of innovative bone grafting materials. In this study, a novel hydroxyapatite (HA) material was successfully prepared and comprehensively characterized. Antimicrobial experiments and biological evaluations were conducted to determine its efficacy. Based on the aforementioned research findings, 3D printing technology was employed to fabricate HA/chitosan (CS)/ polycaprolactone (PCL) scaffolds. The composition of the scaffold materials was confirmed through X-ray diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) tests, while the influence of different HA ratios on the scaffold surface morphology was observed. Additionally, antimicrobial experiments demonstrated the favorable antimicrobial activity of the scaffolds containing 30%HA + 5%CS + PCL. Furthermore, the water contact angle measurements confirmed the superhydrophilicity of the scaffolds. Finally, the excellent bioactivity and ability to promote tissue regeneration of the scaffolds were further confirmed by in vitro and in vivo experiments. This study provides new options for future repair and regeneration of bone tissue and clinical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fish scale derived hydroxyapatite incorporated 3D printed PLA scaffold for bone tissue engineering
    Thomas, N. G.
    Dalvi, Y. B.
    Fijol, N.
    Shilpa, J.
    Unni, Rekha
    Binsi, P. K.
    Varghese, M. G.
    Reshmy, R.
    Mathew, A. P.
    Anil, Sukumaran
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (24) : 10841 - 10851
  • [2] Fish scale derived hydroxyapatite scaffold for bone tissue engineering
    Mondal, B.
    Mondal, S.
    Mondal, A.
    Mandal, N.
    MATERIALS CHARACTERIZATION, 2016, 121 : 112 - 124
  • [3] 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering
    Shao, Huiping
    He, Jianzhuang
    Lin, Tao
    Zhang, Zhinan
    Zhang, Yumeng
    Liu, Shuwen
    CERAMICS INTERNATIONAL, 2019, 45 (01) : 1163 - 1170
  • [4] 3D printing of PCL/nano-hydroxyapatite scaffolds derived from biogenic sources for bone tissue engineering
    Cestari, Francesca
    Petretta, Mauro
    Yang, Yuejiao
    Motta, Antonella
    Grigolo, Brunella
    Sglavo, Vincenzo M.
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2021, 29
  • [5] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Barbara Leukers
    Hülya Gülkan
    Stephan H. Irsen
    Stefan Milz
    Carsten Tille
    Matthias Schieker
    Hermann Seitz
    Journal of Materials Science: Materials in Medicine, 2005, 16 : 1121 - 1124
  • [6] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Leukers, B
    Gülkan, H
    Irsen, SH
    Milz, S
    Tille, C
    Schieker, M
    Seitz, H
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (12) : 1121 - 1124
  • [7] Chitosan/hydroxyapatite hybrid scaffold for bone tissue engineering
    Brun, V.
    Guillaume, C.
    Alami, S. Mechiche
    Josse, J.
    Jing, J.
    Draux, F.
    Bouthors, S.
    Laurent-Maquin, D.
    Gangloff, S. C.
    Kerdjoudj, H.
    Velard, F.
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 : S63 - S73
  • [8] Fabrication and characterization of electrospinning/3D printing bone tissue engineering scaffold
    Yu, Yinxian
    Hua, Sha
    Yang, Mengkai
    Fu, Zeze
    Teng, Songsong
    Niu, Kerun
    Zhao, Qinghua
    Yi, Chengqing
    RSC ADVANCES, 2016, 6 (112): : 110557 - 110565
  • [9] Marine plankton exoskeletone-derived hydroxyapatite/polycaprolactone composite 3D scaffold for bone tissue engineering
    Baek, Ji Won
    Kim, Ki Su
    Park, Ho
    Kim, Beom-Su
    BIOMATERIALS SCIENCE, 2022, 10 (24) : 7055 - 7066
  • [10] Performance of 3D printed PCL/PLGA/HA biological bone tissue engineering scaffold
    Ma, Zhiyong
    Wang, Qifan
    Xie, Wenjia
    Ye, Wenjie
    Zhong, Linna
    Huge, Jile
    Wang, Ying
    POLYMER COMPOSITES, 2021, 42 (07) : 3593 - 3602