Quantum Phase Transitions in periodically quenched systems

被引:0
作者
Saiz, A. [1 ]
Khalouf-Rivera, J. [2 ,3 ,4 ,5 ]
Arias, J. M. [1 ,6 ]
Perez-Fernandez, P. [6 ]
Casado-Pascual, J. [7 ]
机构
[1] Univ Seville, Fac Fis, Dept Fis Atom Mol & Nucl, Apartado 1065, E-41080 Seville, Spain
[2] Univ Seville, Escuela Tecn Super Ingn, Dept Fis Aplicada 3, E-41092 Seville, Spain
[3] Trinity Coll Dublin, Sch Phys, Coll Green, Dublin, Ireland
[4] Univ Huelva, Dept Ciencias Integradas, Huelva 21071, Spain
[5] Univ Huelva, Ctr Estudios Avanzados Fis Matemat & Comp, Huelva 21071, Spain
[6] Univ Granada, Inst Carlosde Fis Teor & Computac 1, Fuentenueva S-N, Granada 18071, Spain
[7] Univ Seville, Fis Teor, Apartado Correos 1065, Seville 41080, Spain
关键词
BODY APPROXIMATION METHODS; SOLVABLE MODEL; VALIDITY; PROPAGATION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum phase transitions encompass a variety of phenomena that occur in quantum systems exhibiting several possible symmetries. Traditionally, these transitions are explored by continuously varying a control parameter that connects two different symmetry configurations. Here we propose an alternative approach where the control parameter undergoes abrupt and time-periodic jumps between only two values. This approach yields results surprisingly similar to those obtained by the traditional one and may prove experimentally useful in situations where accessing the control parameter is challenging.
引用
收藏
页数:12
相关论文
共 30 条
[1]   Critical quasienergy states in driven many-body systems [J].
Bastidas, V. M. ;
Engelhardt, G. ;
Perez-Fernandez, P. ;
Vogl, M. ;
Brandes, T. .
PHYSICAL REVIEW A, 2014, 90 (06)
[2]   Quantum Criticality and Dynamical Instability in the Kicked-Top Model [J].
Bastidas, Victor Manuel ;
Perez-Fernandez, Pedro ;
Vogl, Malte ;
Brandes, Tobias .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)
[3]  
Carr L. D., 2010, Understanding quantum phase transitions, DOI DOI 10.1103/PhysRevB.78.224413
[4]   Excited-state quantum phase transitions [J].
Cejnar, Pavel ;
Stransky, Pavel ;
Macek, Michal ;
Kloc, Michal .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (13)
[5]   Many-body energy localization transition in periodically driven systems [J].
D'Alessio, Luca ;
Polkovnikov, Anatoli .
ANNALS OF PHYSICS, 2013, 333 :19-33
[6]   Arresting Classical Many-Body Chaos by Kinetic Constraints [J].
Deger, Aydin ;
Roy, Sthitadhi ;
Lazarides, Achilleas .
PHYSICAL REVIEW LETTERS, 2022, 129 (16)
[7]   Finite-size scaling exponents of the Lipkin-Meshkov-Glick model [J].
Dusuel, S ;
Vidal, J .
PHYSICAL REVIEW LETTERS, 2004, 93 (23)
[8]  
Frank A, 1994, ALGEBRAIC METHODS MO
[9]   VALIDITY OF MANY-BODY APPROXIMATION METHODS FOR A SOLVABLE MODEL .3. DIAGRAM SUMMATIONS [J].
GLICK, AJ ;
LIPKIN, HJ ;
MESHKOV, N .
NUCLEAR PHYSICS, 1965, 62 (02) :211-&
[10]   Driven quantum tunneling [J].
Grifoni, M ;
Hanggi, P .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 304 (5-6) :229-354