The Wasserstein Distance for Ricci Shrinkers

被引:0
作者
Conrado, Franciele [1 ]
Zhou, Detang [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Fluminense, Dept Geometria, Inst Matemat & Estat, BR-24210201 Niteroi, RJ, Brazil
关键词
PERELMANS REDUCED VOLUME; GAP THEOREM; SOLITONS; CLASSIFICATION; RIGIDITY;
D O I
10.1093/imrn/rnae099
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $(M<^>{n},g,f)$ be a Ricci shrinker such that $\text{Ric}_{f}=\frac{1}{2}g$ and the measure induced by the weighted volume element $(4\pi )<^>{-\frac{n}{2}}e<^>{-f}dv_{g}$ is a probability measure. Given a point $p\in M$ , we consider two probability measures defined in the tangent space $T_{p}M$ , namely the Gaussian measure $\gamma $ and the measure $\overline{\nu }$ induced by the exponential map of $M$ to $p$ . In this paper, we prove a result that provides an upper estimate for the Wasserstein distance with respect to the Euclidean metric $g_{0}$ between the measures $\overline{\nu }$ and $\gamma $ , and which also elucidates the rigidity implications resulting from this estimate.
引用
收藏
页码:10485 / 10502
页数:18
相关论文
共 39 条
  • [1] Bakry D., 1985, LECT NOTES MATH, V1123, P177, DOI 10.1007/BFb0075847
  • [2] Cao H.-D., 2008, Surveys in differential geometry, XII: Geometric flows, P47
  • [3] Four-dimensional complete gradient shrinking Ricci solitons
    Cao, Huai-Dong
    Ribeiro, Ernani, Jr.
    Zhou, Detang
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 778 : 127 - 144
  • [4] ON BACH-FLAT GRADIENT SHRINKING RICCI SOLITONS
    Cao, Huai-Dong
    Chen, Qiang
    [J]. DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) : 1149 - 1169
  • [5] Cao HD, 2010, J DIFFER GEOM, V85, P175
  • [6] ON LOCALLY CONFORMALLY FLAT GRADIENT SHRINKING RICCI SOLITONS
    Cao, Xiaodong
    Wang, Biao
    Zhang, Zhou
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (02) : 269 - 282
  • [7] Carrillo J., 2008, ARXIV
  • [8] Chen BL, 2009, J DIFFER GEOM, V82, P363
  • [9] On Four-Dimensional Anti-self-dual Gradient Ricci Solitons
    Chen, Xiuxiong
    Wang, Yuanqi
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1335 - 1343
  • [10] Cheng X., 2023, J. Reine Angew. Math. (Crelles J.), V2023, P255, DOI [10.1515/crelle-2023-0042, DOI 10.1515/CRELLE-2023-0042]