Antioxidant Interfaces Enabled by Self-Deoxidizing and Self-Dehydrogenating Redox Couple for Reversible Zinc Metal Batteries

被引:19
作者
Feng, Kaiqiang [1 ]
Chen, Bingchao [1 ]
Xi, Baojuan [2 ]
Tian, Chenxu [3 ]
Sang, Bingyan [1 ]
Meng, Shuhan [1 ]
He, Yanyan [1 ]
Gao, Tingting [1 ]
An, Xuguang [4 ]
Zhou, Guowei [1 ]
Xiong, Shenglin [2 ]
Wang, Xiao [1 ]
机构
[1] Qilu Univ Technol, Key Lab Fine Chem Univ Shandong, Jinan Engn Lab Multiscale Funct Mat, Sch Chem & Chem Engn,Shandong Acad Sci, Jinan 250353, Shandong, Peoples R China
[2] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
[3] Sichuan Univ, Coll Polymer Sci & Engn, Chengdu 610065, Peoples R China
[4] Chengdu Univ, Sch Mech Engn, Chengdu 610106, Peoples R China
基金
中国国家自然科学基金;
关键词
electrolyte additives; self-deoxidizing; solid electrolyte interphase; Zn utilization rate; Zn metal anode; ELECTROLYTE; CORROSION; ANODE;
D O I
10.1002/aenm.202401053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Parasitic electrolyte reactions and dendrite growth make Zn metal anodes with high Zn utilization rates (ZURs) more inaccessible, holding back the advance of aqueous zinc metal batteries (AZMBs). Here, sodium isoascorbate (SIA) is introduced to aqueous electrolytes as a self-deoxidizing and self-dehydrogenating additive. Coexisting C6H7O6-/C6H5O6- couple spontaneously captures dissolved oxygen and eliminates generated hydrogen by acting as a redox buffer, which leads to the creation of antioxidant Interfaces due to an in situ formed ZnCO3-dominated solid electrolyte interphase (SEI). This SEI enables the (100) faceted electrode with dendrite-free and non-corrosive Zn plating/stripping, thus yielding a Coulombic efficiency of 99.7% up to 1100 h at 5 mAh cm-2, as well as a stable cycle sustaining for over 335 h under a high ZUR of 85.5%. Full-cell properties are demonstrated by matching a poly(3,4-ethylenedioxythiophene) intercalated vanadium oxide (PEDOT-V2O5) cathode, which harvests a high capacity of 302 mAh g-1 (at 0.01 A g-1) and holds 94.2% capacity retention over 600 cycles (at 1 A g-1) under practical conditions (N/P = 4.2 and E/C = 7.6 mu L mg-1). These findings provide a new solution for electrolyte design for industrializing AZMBs. Coexisting C6H7O6-/C6H5O6- redox couple in aqueous electrolyte with sodium isoascorbate as a self-deoxidizing and self-dehydrogenating additive spontaneously captures dissolved oxygen and eliminates generated hydrogen. Antioxidant Interfaces are created on the Zn anode due to the formation of a ZnCO3-dominated solid electrolyte interphase, which enables the (100) faceted electrode with dendrite-free and non-corrosive Zn plating/stripping and enhances the electrochemical performance of Zn||PEDOT-V2O5 full cells. image
引用
收藏
页数:12
相关论文
共 66 条
[1]   Introducing Ce ions and oxygen defects into V2O5 nanoribbons for efficient aqueous zinc ion storage [J].
Bao, Mingying ;
Zhang, Zhengchunyu ;
An, Xuguang ;
Liu, Jie ;
Feng, Jinkui ;
Xi, Baojuan ;
Xiong, Shenglin .
NANO RESEARCH, 2023, 16 (02) :2445-2453
[2]   Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies [J].
Bayaguud, Aruuhan ;
Fu, Yanpeng ;
Zhu, Changbao .
JOURNAL OF ENERGY CHEMISTRY, 2022, 64 (246-262) :246-262
[3]   Solvation Structure Design for Aqueous Zn Metal Batteries [J].
Cao, Longsheng ;
Li, Dan ;
Hu, Enyuan ;
Xu, Jijian ;
Deng, Tao ;
Ma, Lin ;
Wang, Yi ;
Yang, Xiao-Qing ;
Wang, Chunsheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (51) :21404-21409
[4]   Fast Zn2+ mobility enabled by sucrose modified Zn2+ solvation structure for dendrite-free aqueous zinc battery [J].
Cao, Yufang ;
Tang, Xiaohui ;
Li, Linge ;
Tu, Haifeng ;
Hu, Yuzhen ;
Yu, Yingying ;
Cheng, Shuang ;
Lin, Hongzhen ;
Zhang, Liwen ;
Di, Jiangtao ;
Zhang, Yongyi ;
Liu, Meinan .
NANO RESEARCH, 2023, 16 (03) :3839-3846
[5]   Machine-Learning-Driven G-Quartet-Based Circularly Polarized Luminescence Materials [J].
Dai, Yankai ;
Zhang, Zhiwei ;
Wang, Dong ;
Li, Tianliang ;
Ren, Yuze ;
Chen, Jingqi ;
Feng, Lingyan .
ADVANCED MATERIALS, 2024, 36 (04)
[6]   Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries [J].
Dou, Xinyue ;
Xie, Xuefang ;
Liang, Shuquan ;
Fang, Guozhao .
SCIENCE BULLETIN, 2024, 69 (06) :833-845
[7]   Biphasic Electrolyte Engineering Enabling Reversible Zn Metal Batteries [J].
Fan, Hefei ;
Zhang, Haoxiang ;
Liu, Qianfeng ;
Li, Min ;
Liu, Lu ;
Gao, Jianxin ;
Zhang, Qiang ;
Wang, Erdong .
ACS ENERGY LETTERS, 2023, 8 (10) :4338-4348
[8]  
Feng X., 2023, ACS ENERGY LETT, V8, P2023
[9]   In situ construction of organic anion-enriched interface achieves ultra-long life aqueous zinc-ion battery [J].
Guan, Qiulong ;
Li, Jianghuan ;
Li, Lijie ;
Chai, Penghao ;
Li, Yuchen ;
Zhang, Shaohua ;
Yu, Xinyu ;
Bao, Lixia ;
Peng, Jiong ;
Li, Xin .
CHEMICAL ENGINEERING JOURNAL, 2023, 476
[10]   Advances on Defect Engineering of Vanadium-Based Compounds for High-Energy Aqueous Zinc-Ion Batteries [J].
Guo, Cong ;
Yi, Shanjun ;
Si, Rui ;
Xi, Baojuan ;
An, Xuguang ;
Liu, Jie ;
Li, Jingfa ;
Xiong, Shenglin .
ADVANCED ENERGY MATERIALS, 2022, 12 (40)