Smoothed empirical likelihood estimation and automatic variable selection for an expectile high-dimensional model

被引:0
|
作者
Ciuperca, Gabriela [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Inst Camille Jordan, UMR 5208, Bat Braconnier,43 Blvd 11 November 1918, F-69622 Villeurbanne, France
关键词
Empirical likelihood; automatic selection; missing value; expectile high-dimension; REGRESSION-MODELS;
D O I
10.1080/03610926.2024.2376676
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a linear model which can have a large number of explanatory variables, the errors with an asymmetric distribution or the values of the explained variable are missing at random. In order to take in account these several situations, we consider the non parametric empirical likelihood (EL) estimation method. Because a constraint in EL contains an indicator function then a smoothed function instead of the indicator will be considered. Two smoothed expectile maximum EL methods are proposed, one of which will automatically select the explanatory variables. For each of the methods we obtain the convergence rate of the estimators and their asymptotic normality. The smoothed expectile empirical log-likelihood ratio process follow asymptotically a chi-square distribution and moreover the adaptive LASSO smoothed expectile maximum EL estimator satisfies the sparsity property which guarantees the automatic selection of zero model coefficients. In order to implement these methods, we propose four algorithms.
引用
收藏
页数:39
相关论文
共 50 条
  • [41] High-Dimensional Variable Selection for Survival Data
    Ishwaran, Hemant
    Kogalur, Udaya B.
    Gorodeski, Eiran Z.
    Minn, Andy J.
    Lauer, Michael S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (489) : 205 - 217
  • [42] A variable-selection control chart via penalized likelihood and Gaussian mixture model for multimodal and high-dimensional processes
    Yan, Dandan
    Zhang, Shuai
    Jung, Uk
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (04) : 1263 - 1275
  • [43] Empirical likelihood-based estimation and inference in randomized controlled trials with high-dimensional covariates
    Liang, Wei
    Yan, Ying
    STATISTICS AND ITS INTERFACE, 2022, 15 (03) : 283 - 301
  • [44] Penalized empirical likelihood for high-dimensional generalized linear models
    Chen, Xia
    Mao, Liyue
    STATISTICS AND ITS INTERFACE, 2021, 14 (02) : 83 - 94
  • [45] Jackknife empirical likelihood test for high-dimensional regression coefficients
    Zang, Yangguang
    Zhang, Sanguo
    Li, Qizhai
    Zhang, Qingzhao
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 94 : 302 - 316
  • [46] Variable selection for high-dimensional incomplete data using horseshoe estimation with data augmentation
    Zhang, Yunxi
    Kim, Soeun
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (12) : 4235 - 4251
  • [47] Concave group methods for variable selection and estimation in high-dimensional varying coefficient models
    Yang GuangRen
    Huang Jian
    Zhou Yong
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2073 - 2090
  • [48] Penalized empirical likelihood for longitudinal expectile regression with growing dimensional data
    Zhang, Ting
    Wang, Yanan
    Wang, Lei
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2024, 53 (03) : 752 - 773
  • [49] Concave group methods for variable selection and estimation in high-dimensional varying coefficient models
    YANG GuangRen
    HUANG Jian
    ZHOU Yong
    Science China(Mathematics), 2014, 57 (10) : 2073 - 2090
  • [50] Concave group methods for variable selection and estimation in high-dimensional varying coefficient models
    GuangRen Yang
    Jian Huang
    Yong Zhou
    Science China Mathematics, 2014, 57 : 2073 - 2090