Smoothed empirical likelihood estimation and automatic variable selection for an expectile high-dimensional model

被引:0
|
作者
Ciuperca, Gabriela [1 ]
机构
[1] Univ Claude Bernard Lyon 1, Inst Camille Jordan, UMR 5208, Bat Braconnier,43 Blvd 11 November 1918, F-69622 Villeurbanne, France
关键词
Empirical likelihood; automatic selection; missing value; expectile high-dimension; REGRESSION-MODELS;
D O I
10.1080/03610926.2024.2376676
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a linear model which can have a large number of explanatory variables, the errors with an asymmetric distribution or the values of the explained variable are missing at random. In order to take in account these several situations, we consider the non parametric empirical likelihood (EL) estimation method. Because a constraint in EL contains an indicator function then a smoothed function instead of the indicator will be considered. Two smoothed expectile maximum EL methods are proposed, one of which will automatically select the explanatory variables. For each of the methods we obtain the convergence rate of the estimators and their asymptotic normality. The smoothed expectile empirical log-likelihood ratio process follow asymptotically a chi-square distribution and moreover the adaptive LASSO smoothed expectile maximum EL estimator satisfies the sparsity property which guarantees the automatic selection of zero model coefficients. In order to implement these methods, we propose four algorithms.
引用
收藏
页数:39
相关论文
共 50 条
  • [1] Moment Selection and Generalized Empirical Likelihood Estimation in High-Dimensional Unconditional Moment Conditions
    Wang, Wenjun
    Yang, Zhihuang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2024, 37 (06) : 2738 - 2770
  • [2] Moment Selection and Generalized Empirical Likelihood Estimation in High-Dimensional Unconditional Moment Conditions
    WANG Wenjun
    YANG Zhihuang
    Journal of Systems Science & Complexity, 2024, 37 (06) : 2738 - 2770
  • [3] Variable selection and estimation in high-dimensional models
    Horowitz, Joel L.
    CANADIAN JOURNAL OF ECONOMICS-REVUE CANADIENNE D ECONOMIQUE, 2015, 48 (02): : 389 - 407
  • [4] High-dimensional empirical likelihood inference
    Chang, Jinyuan
    Chen, Song Xi
    Tang, Cheng Yong
    Wu, Tong Tong
    BIOMETRIKA, 2021, 108 (01) : 127 - 147
  • [5] Penalized high-dimensional empirical likelihood
    Tang, Cheng Yong
    Leng, Chenlei
    BIOMETRIKA, 2010, 97 (04) : 905 - 919
  • [6] Empirical likelihood for high-dimensional partially functional linear model
    Jiang, Zhiqiang
    Huang, Zhensheng
    Fan, Guoliang
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2020, 9 (04)
  • [7] HIGH-DIMENSIONAL VARIABLE SELECTION
    Wasserman, Larry
    Roeder, Kathryn
    ANNALS OF STATISTICS, 2009, 37 (5A): : 2178 - 2201
  • [8] Automatic model selection for high-dimensional survival analysis
    Lang, M.
    Kotthaus, H.
    Marwedel, P.
    Weihs, C.
    Rahnenfuehrer, J.
    Bischl, B.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (01) : 62 - 76
  • [9] Variable selection and estimation for high-dimensional spatial autoregressive models
    Cai, Liqian
    Maiti, Tapabrata
    SCANDINAVIAN JOURNAL OF STATISTICS, 2020, 47 (02) : 587 - 607
  • [10] Estimation and variable selection for high-dimensional spatial data models
    Hou, Li
    Jin, Baisuo
    Wu, Yuehua
    JOURNAL OF ECONOMETRICS, 2024, 238 (02)