Smoothed empirical likelihood estimation and automatic variable selection for an expectile high-dimensional model
被引:0
|
作者:
Ciuperca, Gabriela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Claude Bernard Lyon 1, Inst Camille Jordan, UMR 5208, Bat Braconnier,43 Blvd 11 November 1918, F-69622 Villeurbanne, FranceUniv Claude Bernard Lyon 1, Inst Camille Jordan, UMR 5208, Bat Braconnier,43 Blvd 11 November 1918, F-69622 Villeurbanne, France
Ciuperca, Gabriela
[1
]
机构:
[1] Univ Claude Bernard Lyon 1, Inst Camille Jordan, UMR 5208, Bat Braconnier,43 Blvd 11 November 1918, F-69622 Villeurbanne, France
We consider a linear model which can have a large number of explanatory variables, the errors with an asymmetric distribution or the values of the explained variable are missing at random. In order to take in account these several situations, we consider the non parametric empirical likelihood (EL) estimation method. Because a constraint in EL contains an indicator function then a smoothed function instead of the indicator will be considered. Two smoothed expectile maximum EL methods are proposed, one of which will automatically select the explanatory variables. For each of the methods we obtain the convergence rate of the estimators and their asymptotic normality. The smoothed expectile empirical log-likelihood ratio process follow asymptotically a chi-square distribution and moreover the adaptive LASSO smoothed expectile maximum EL estimator satisfies the sparsity property which guarantees the automatic selection of zero model coefficients. In order to implement these methods, we propose four algorithms.
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China
Wang, Wenjun
Yang, Zhihuang
论文数: 0引用数: 0
h-index: 0
机构:
Yunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R ChinaYunnan Univ, Yunnan Key Lab Stat Modeling & Data Anal, Kunming 650091, Peoples R China