Measurement of the Diffusion Coefficient of Dopant in Fiber Using Interferometry

被引:0
作者
Meng, Lingzhi [1 ]
Xia, Qi [1 ]
Wang, Hongye [1 ]
Yuan, Libo [2 ]
机构
[1] Harbin Engn Univ, Coll Phys & Optoelect Engn, Key Lab Infiber Integrated Opt, Minist Educ, Harbin 150001, Peoples R China
[2] Guilin Univ Elect Technol, Photon Res Ctr, Sch Optoelect Engn, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Heating systems; Optical fiber amplifiers; Optical fiber couplers; Refractive index; Optical fiber dispersion; Optical fiber communication; Optical interferometry; Diffusion coefficient; interference; optical fiber; thermal diffusion; THERMAL-DIFFUSION;
D O I
10.1109/JLT.2024.3400228
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report the measurement of the reflection spectrum of a Fabry-Perot interferometer during the diffusion of dopants in optical fiber caused by high-temperature heating, thus indirectly and accurately obtaining the diffusion coefficient of the dopants. The diffusion coefficient of the dopant is measured through the wavelength shift of the interferometer spectrum when diffusion of the dopant from the core to the cladding results in a decrease in the refractive index of the core. The diffusion coefficient of germanium-doped single-mode fiber before and after hydrogen loading was measured. The results show that hydrogen in the fiber significantly enhances the diffusion rate of the germanium dopant. The measured germanium-doped diffusion coefficients are in good agreement with the results of previous studies. Our proposed method of dopant diffusion coefficient measurement is simpler and more convenient. Accurate characterization of dopant diffusion coefficients in optical fibers helps to accurately understand the dopant diffusion process and is particularly important for the fabrication of various optical fiber-integrated optical devices using thermal diffusion techniques.
引用
收藏
页码:5657 / 5662
页数:6
相关论文
共 20 条
[1]  
Barenblatt G. I., 1996, SCALING SELF SIMILAR, DOI [10.1017/CBO9781107050242, DOI 10.1017/CBO9781107050242]
[2]   Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology [J].
Chen, Jin-hui ;
Xiong, Yi-feng ;
Xu, Fei ;
Lu, Yan-qing .
LIGHT-SCIENCE & APPLICATIONS, 2021, 10 (01)
[3]   Investigation on porous aluminosilicate soot layer for fabrication of specialty optical fiber using VPCD technique [J].
Choudhury, Nilotpal ;
Dey, Nitai ;
Mandal, Ashok Kumar ;
Sen, Ranjan ;
Dhar, Anirban .
CERAMICS INTERNATIONAL, 2023, 49 (09) :14145-14154
[4]   Construction of cascaded Fabry-Perot interferometers by four in-fiber mirrors for high-temperature sensing [J].
Deng, Jun ;
Wang, D. N. .
OPTICS LETTERS, 2019, 44 (05) :1289-1292
[5]   DIFFUSION BEHAVIOR OF FLUORINE IN SILICA GLASS [J].
KIRCHHOF, J ;
UNGER, S ;
KLEIN, KF ;
KNAPPE, B .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1995, 181 (03) :266-273
[6]   Fiber Bragg gratings with enhanced thermal stability by residual stress relaxation [J].
Li, Yuhua ;
Yang, Minwei ;
Wang, D. N. ;
Lu, J. ;
Sun, T. ;
Grattan, K. T. V. .
OPTICS EXPRESS, 2009, 17 (22) :19785-19790
[7]   Dopant diffusion during optical fibre drawing [J].
Lyytikäinen, K ;
Huntington, ST ;
Carter, ALG ;
McNamara, P ;
Fleming, S ;
Abramczyk, J ;
Kaplin, I ;
Schötz, G .
OPTICS EXPRESS, 2004, 12 (06) :972-977
[8]   In-Fiber Fabry-Perot Cavity Sensor for High-Temperature Applications [J].
Mathew, Jinesh ;
Schneller, Oliver ;
Polyzos, Dimitrios ;
Havermann, Dirk ;
Carter, Richard M. ;
MacPherson, William N. ;
Hand, Duncan P. ;
Maier, Robert R. J. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (12) :2419-2425
[9]   A Coaxial Dual-Waveguide Fiber Coupler [J].
Meng, Lingzhi ;
Ju, Tao ;
Yuan, Libo .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (18) :6059-6064
[10]  
Mills A.F., 1995, Heat and Mass Transfer