Generators of negacyclic codes over Fp[u, v]/⟨u2, v2, uv, vu⟩ of length ps

被引:0
作者
Choi, Hyun Seung [1 ]
Kim, Boran [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math Educ, Daegu 41566, South Korea
关键词
Finite local rings; Negacyclic codes; Ideals; Hamming distance; CYCLIC CODES;
D O I
10.1007/s40314-024-02790-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a local non-Frobenius ring Rp = F-p[u, v]/< u(2), v(2), uv, vu > defined for each prime number p and study the ideal representation of the ring R-p[x]/< x(n) + 1 >, which is well-known to be related to negacyclic codes over R-p of length n = p(s) with s >= 1. We assume that n is a power of p, and under this setting, we show that a specific class of ideals can be represented uniquely in terms of degrees related to its generators. We also give a lower bound of the minimum Hamming distances of negacyclic codes over R-p, and show that the lower bound is sharp for several codes whose corresponding ideals of R-p[x]/< x(n) + 1 > belong to the aforementioned class.
引用
收藏
页数:15
相关论文
共 15 条
[1]  
Badawi A, 1997, LECT NOTES PURE APPL, V185, P57
[2]  
Berlekamp, 1968, P C COMB MATH ITS AP, P298
[3]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[4]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[5]  
Calderbank A. R., 1995, Designs, Codes and Cryptography, V6, P21, DOI 10.1007/BF01390768
[6]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[7]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[8]   PSEUDO-VALUATION DOMAINS [J].
HEDSTROM, JR ;
HOUSTON, EG .
PACIFIC JOURNAL OF MATHEMATICS, 1978, 75 (01) :137-147
[9]  
Kanwar P., 1997, Finite Fields and their Applications, V3, P334, DOI 10.1006/ffta.1997.0189
[10]  
Kim B., 2024, Adv Math Commun, V18, P304, DOI [10.3934/amc.2023030, DOI 10.3934/AMC.2023030]