Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging

被引:25
|
作者
Wang, Yan-Ran [1 ]
Yang, Kai [2 ,3 ]
Wen, Yi [4 ]
Wang, Pengcheng [5 ]
Hu, Yuepeng [6 ]
Lai, Yongfan [7 ]
Wang, Yufeng [8 ]
Zhao, Kankan [9 ]
Tang, Siyi [1 ,10 ]
Zhang, Angela [1 ,11 ]
Zhan, Huayi [4 ]
Lu, Minjie [2 ,3 ]
Chen, Xiuyu [2 ,3 ]
Yang, Shujuan [2 ,3 ]
Dong, Zhixiang [2 ,3 ]
Wang, Yining [12 ]
Liu, Hui [13 ]
Zhao, Lei [14 ]
Huang, Lu [15 ]
Li, Yunling [16 ]
Wu, Lianming [17 ]
Chen, Zixian [18 ]
Luo, Yi [19 ]
Liu, Dongbo [4 ]
Zhao, Pengbo [20 ]
Lin, Keldon [21 ]
Wu, Joseph C. [1 ,11 ]
Zhao, Shihua [2 ,3 ]
机构
[1] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[2] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Dept Magnet Resonance Imaging, Beijing, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Natl Ctr Cardiovasc Dis, Beijing, Peoples R China
[4] Sichuan Changhong Elect Holding Grp, Changhong Res CHAIR, Mianyang, Sichuan, Peoples R China
[5] Univ Southern Calif, Dept Biomed Engn, Los Angeles, CA USA
[6] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[7] Univ Sci & Technol China, Sch Engn, Hefei, Peoples R China
[8] SUNY Stony Brook, Dept Comp Sci, New York, NY USA
[9] Chinese Acad Sci, Shenzhen Inst Adv Technol, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen, Peoples R China
[10] Stanford Univ, Dept Elect Engn, Stanford, CA USA
[11] Stanford Univ, Stanford Cardiovasc Inst, Sch Med, Div Cardiol, Stanford, CA USA
[12] Peking Union Med Coll Hosp, Beijing, Peoples R China
[13] Guangdong Prov Peoples Hosp, Guangzhou, Guangdong, Peoples R China
[14] Beijing Anzhen Hosp, Beijing, Peoples R China
[15] Tongji Hosp, Wuhan, Peoples R China
[16] Harbin Med Univ, Affiliated Hosp 2, Harbin, Peoples R China
[17] Renji Hosp, Shanghai, Peoples R China
[18] Lanzhou Univ, Hosp 1, Lanzhou, Peoples R China
[19] Univ Sci & Technol China, Div Life Sci & Med, USTC, Affiliated Hosp 1, Hefei, Peoples R China
[20] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL USA
[21] Mayo Clin, Alix Sch Med, Phoenix, AZ USA
基金
国家重点研发计划;
关键词
RIGHT HEART CATHETERIZATION; CARDIOLOGY WORKING GROUP; EUROPEAN-SOCIETY; PULMONARY-HYPERTENSION; POSITION STATEMENT; TASK-FORCE; CARDIOMYOPATHY; CLASSIFICATION; MYOCARDITIS; MANAGEMENT;
D O I
10.1038/s41591-024-02971-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cardiac magnetic resonance imaging (CMR) is the gold standard for cardiac function assessment and plays a crucial role in diagnosing cardiovascular disease (CVD). However, its widespread application has been limited by the heavy resource burden of CMR interpretation. Here, to address this challenge, we developed and validated computerized CMR interpretation for screening and diagnosis of 11 types of CVD in 9,719 patients. We propose a two-stage paradigm consisting of noninvasive cine-based CVD screening followed by cine and late gadolinium enhancement-based diagnosis. The screening and diagnostic models achieved high performance (area under the curve of 0.988 +/- 0.3% and 0.991 +/- 0.0%, respectively) in both internal and external datasets. Furthermore, the diagnostic model outperformed cardiologists in diagnosing pulmonary arterial hypertension, demonstrating the ability of artificial intelligence-enabled CMR to detect previously unidentified CMR features. This proof-of-concept study holds the potential to substantially advance the efficiency and scalability of CMR interpretation, thereby improving CVD screening and diagnosis.
引用
收藏
页码:1471 / +
页数:33
相关论文
共 50 条
  • [1] Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram
    Attia, Zachi I.
    Kapa, Suraj
    Lopez-Jimenez, Francisco
    McKie, Paul M.
    Ladewig, Dorothy J.
    Satam, Gaurav
    Pellikka, Patricia A.
    Enriquez-Sarano, Maurice
    Noseworthy, Peter A.
    Munger, Thomas M.
    Asirvatham, Samuel J.
    Scott, Christopher G.
    Carter, Rickey E.
    Friedman, Paul A.
    NATURE MEDICINE, 2019, 25 (01) : 70 - +
  • [2] Adaptive Aquila Optimizer with Explainable Artificial Intelligence-Enabled Cancer Diagnosis on Medical Imaging
    Alkhalaf, Salem
    Alturise, Fahad
    Bahaddad, Adel Aboud
    Elnaim, Bushra M. Elamin
    Shabana, Samah
    Abdel-Khalek, Sayed
    Mansour, Romany F.
    CANCERS, 2023, 15 (05)
  • [3] Use of Magnetic Resonance Imaging and Artificial Intelligence in Studies of Diagnosis of Parkinson's Disease
    Xu, Jingjing
    Zhang, Minming
    ACS CHEMICAL NEUROSCIENCE, 2019, 10 (06): : 2658 - +
  • [4] Artificial intelligence-enabled Internet of Things-based system for COVID-19 screening using aerial thermal imaging
    Barnawi, Ahmed
    Chhikara, Prateek
    Tekchandani, Rajkumar
    Kumar, Neeraj
    Alzahrani, Bander
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 124 : 119 - 132
  • [5] Cardiovascular Magnetic Resonance Imaging in Myocardial Disease
    Popa, Oana-Andreea
    Amzulescu, Mihaela
    Bugeac, Claudia
    Tomescu, Luminita
    Slavu, Iulian M.
    Gheorghita, Valeriu
    Andrei, Rosu
    Tulin, Adrian
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (04)
  • [6] The evolving role of cardiac magnetic resonance imaging in the assessment of cardiovascular disease
    Stokes, Michael B.
    Nerlekar, Nitesh
    Moir, Stuart
    Teo, Karen S.
    AUSTRALIAN FAMILY PHYSICIAN, 2016, 45 (10) : 761 - 764
  • [7] Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms
    Haimovich, Julian S.
    Diamant, Nate
    Khurshid, Shaan
    Di Achille, Paolo
    Reeder, Christopher
    Friedman, Sam
    Singh, Pulkit
    Spurlock, Walter
    Ellinor, Patrick T.
    Philippakis, Anthony
    Batra, Puneet
    Ho, Jennifer E.
    Lubitz, Steven A.
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2023, 4 (02): : 48 - 59
  • [8] Artificial intelligence-enabled detection and assessment of Parkinson's disease using multimodal data: A survey
    Zhao, Aite
    Liu, Yongcan
    Yu, Xinglin
    Xing, Xinyue
    Zhou, Huiyu
    INFORMATION FUSION, 2025, 121
  • [9] Artificial Intelligence-Enabled Electrocardiography Predicts Future Pacemaker Implantation and Adverse Cardiovascular Events
    Hung, Yuan
    Lin, Chin
    Lin, Chin-Sheng
    Lee, Chiao-Chin
    Fang, Wen-Hui
    Lee, Chia-Cheng
    Wang, Chih-Hung
    Tsai, Dung-Jang
    JOURNAL OF MEDICAL SYSTEMS, 2024, 48 (01)
  • [10] Artificial intelligence in cardiac magnetic resonance fingerprinting
    Velasco, Carlos
    Fletcher, Thomas J.
    Botnar, Rene M.
    Prieto, Claudia
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9