Artificial Intelligence-Based Electrocardiographic Biomarker for Outcome Prediction in Patients With Acute Heart Failure: Prospective Cohort Study

被引:8
作者
Cho, Youngjin [1 ,2 ]
Yoon, Minjae [1 ]
Kim, Joonghee [2 ,3 ]
Lee, Ji Hyun [1 ]
Oh, Il-Young [1 ]
Lee, Chan Joo [4 ]
Kang, Seok-Min [4 ]
Choi, Dong-Ju [1 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Internal Med, Div Cardiol,Bundang Hosp, Seongnam, Gyeonggi Do, South Korea
[2] ARPI Inc, Seongnam, Gyeonggi Do, South Korea
[3] Seoul Natl Univ, Dept Emergency Med, Bundang Hosp, Seongnam, Gyeonggi Do, South Korea
[4] Yonsei Univ, Severance Hosp, Dept Internal Med, Div Cardiol,Coll Med, Seoul, South Korea
关键词
acute heart failure; electrocardiography; artificial intelligence; deep learning; NATRIURETIC PEPTIDE;
D O I
10.2196/52139
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Background: Although several biomarkers exist for patients with heart failure (HF), their use in routine clinical practice is often constrained by high costs and limited availability. Objective: We examined the utility of an artificial intelligence (AI) algorithm that analyzes printed electrocardiograms (ECGs) for outcome prediction in patients with acute HF. Methods: We retrospectively analyzed prospectively collected data of patients with acute HF at two tertiary centers in Korea. Baseline ECGs were analyzed using a deep-learning system called Quantitative ECG (QCG), which was trained to detect several urgent clinical conditions, including shock, cardiac arrest, and reduced left ventricular ejection fraction (LVEF). Results: Among the 1254 patients enrolled, in-hospital cardiac death occurred in 53 (4.2%) patients, and the QCG score for critical events (QCG-Critical) was significantly higher in these patients than in survivors (mean 0.57, SD 0.23 vs mean 0.29, SD 0.20; P<.001). The QCG-Critical score was an independent predictor of in-hospital cardiac death after adjustment for age, sex, comorbidities, HF etiology/type, atrial fibrillation, and QRS widening (adjusted odds ratio [OR] 1.68, 95% CI 1.47-1.92 per 0.1 increase; P<.001), and remained a significant predictor after additional adjustments for echocardiographic LVEF and N-terminal prohormone of brain natriuretic peptide level (adjusted OR 1.59, 95% CI 1.36-1.87 per 0.1 increase; P<.001). During long-term follow-up, patients with higher QCG-Critical scores (>0.5) had higher mortality rates than those with low QCG-Critical scores Conclusions: Predicting outcomes in patients with acute HF using the QCG-Critical score is feasible, indicating that this Trial Registration: ClinicalTrials.gov NCT01389843; https://clinicaltrials.gov/study/NCT01389843
引用
收藏
页数:11
相关论文
共 24 条
[1]   Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients [J].
Ahmad, Tariq ;
Lund, Lars H. ;
Rao, Pooja ;
Ghosh, Rohit ;
Warier, Prashant ;
Vaccaro, Benjamin ;
Dahlstrom, Ulf ;
O'Connor, Christopher M. ;
Felker, G. Michael ;
Desai, Nihar R. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (08)
[2]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[3]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[4]   Implantable Cardioverter-defibrillator Utilization and Its Outcomes in Korea: Data from Korean Acute Heart Failure Registry [J].
Cho, Youngjin ;
Cho, Sang-Yeong ;
Oh, Il-Young ;
Lee, Ji Hyun ;
Park, Jin Joo ;
Lee, Hae-Young ;
Kim, Kye Hun ;
Yoo, Byung-Su ;
Kang, Seok-Min ;
Baek, Sang Hong ;
Jeon, Eun-Seok ;
Kim, Jae-Joong ;
Cho, Myeong-Chan ;
Chae, Shung Chull ;
Oh, Byung-Hee ;
Choi, Dong-Ju .
JOURNAL OF KOREAN MEDICAL SCIENCE, 2020, 35 (46) :e397
[5]  
Choi J, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-18640-8
[6]   Artificial intelligence versus physicians on interpretation of printed ECG images: Diagnostic performance of ST-elevation myocardial infarction on electrocardiography [J].
Choi, Yoo Jin ;
Park, Min Ji ;
Ko, Yura ;
Soh, Moon-Seung ;
Kim, Hyue Mee ;
Kim, Chee Hae ;
Lee, Eunkyoung ;
Kim, Joonghee .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 363 :6-10
[7]   Fragmented QRS on twelve-lead electrocardiogram predicts arrhythmic events in patients with ischemic and nonischemic cardiomyopathy [J].
Das, Mithilesh Kumar ;
Maskoun, Waddah ;
Shen, Changyu ;
Michael, Mark A. ;
Suradi, Hussam ;
Desai, Mona ;
Subbarao, Roopa ;
Bhakta, Deepak .
HEART RHYTHM, 2010, 7 (01) :74-80
[8]   Improving Evidence-Based Care for Heart Failure in Outpatient Cardiology Practices Primary Results of the Registry to Improve the Use of Evidence-Based Heart Failure Therapies in the Outpatient Setting (IMPROVE HF) [J].
Fonarow, Gregg C. ;
Albert, Nancy M. ;
Curtis, Anne B. ;
Stough, Wendy Gattis ;
Gheorghiade, Mihai ;
Heywood, J. Thomas ;
McBride, Mark L. ;
Inge, Patches Johnson ;
Mehra, Mandeep R. ;
O'Connor, Christopher M. ;
Reynolds, Dwight ;
Walsh, Mary Norine ;
Yancy, Clyde W. .
CIRCULATION, 2010, 122 (06) :585-U114
[9]   A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data [J].
Golas, Sara Bersche ;
Shibahara, Takuma ;
Agboola, Stephen ;
Otaki, Hiroko ;
Sato, Jumpei ;
Nakae, Tatsuya ;
Hisamitsu, Toru ;
Kojima, Go ;
Felsted, Jennifer ;
Kakarmath, Sujay ;
Kvedar, Joseph ;
Jethwani, Kamal .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2018, 18
[10]   2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines [J].
Heidenreich, Paul A. ;
Bozkurt, Biykem ;
Aguilar, David ;
Allen, Larry A. ;
Byun, Joni J. ;
Colvin, Monica M. ;
Deswal, Anita ;
Drazner, Mark H. ;
Dunlay, Shannon M. ;
Evers, Linda R. ;
Fang, James C. ;
Fedson, Savitri E. ;
Fonarow, Gregg C. ;
Hayek, Salim S. ;
Hernandez, Adrian F. ;
Khazanie, Prateeti ;
Kittleson, Michelle M. ;
Lee, Christopher S. ;
Link, Mark S. ;
Milano, Carmelo A. ;
Nnacheta, Lorraine C. ;
Sandhu, Alexander T. ;
Stevenson, Lynne Warner ;
Vardeny, Orly ;
Vest, Amanda R. ;
Yancy, Clyde W. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (17) :E253-E421