DeltaGzip: Computing Biopolymer-Ligand Binding Affinity via Kolmogorov Complexity and Lossless Compression

被引:0
作者
Liu, Tao [1 ]
Simine, Lena [1 ]
机构
[1] McGill Univ, Dept Chem, Montreal, PQ H3A 0B8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
APTAMER; SELECTION; DOCKING; OPTIMIZATION; INHIBITORS; ACCURACY; SENSORS;
D O I
10.1021/acs.jcim.4c00461
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The design of biosequences for biosensing and therapeutics is a challenging multistep search and optimization task. In principle, computational modeling may speed up the design process by virtual screening of sequences based on their binding affinities to target molecules. However, in practice, existing machine-learned models trained to predict binding affinities lack the flexibility with respect to reaction conditions, and molecular dynamics simulations that can incorporate reaction conditions suffer from high computational costs. Here, we describe a computational approach called DeltaGzip that evaluates the free energy of binding in biopolymer-ligand complexes from ultrashort equilibrium molecular dynamics simulations. The entropy of binding is evaluated using the Kolmogorov complexity definition of entropy and approximated using a lossless compression algorithm, Gzip. We benchmark the method on a well-studied data set of protein-ligand complexes comparing the predictions of DeltaGzip to the free energies of binding obtained using Jarzynski equality and experimental measurements.
引用
收藏
页码:5617 / 5623
页数:7
相关论文
共 66 条
[41]   Persistent spectral-based machine learning (PerSpect ML) for protein-ligand binding affinity prediction [J].
Meng, Zhenyu ;
Xia, Kelin .
SCIENCE ADVANCES, 2021, 7 (19)
[42]   Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods [J].
Moitessier, Nicolas ;
Pottel, Joshua ;
Therrien, Eric ;
Englebienne, Pablo ;
Liu, Zhaomin ;
Tomberg, Anna ;
Corbeil, Christopher R. .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (09) :1646-1657
[43]   PIGNet: a physics-informed deep learning model toward generalized drug-target interaction predictions [J].
Moon, Seokhyun ;
Zhung, Wonho ;
Yang, Soojung ;
Lim, Jaechang ;
Kim, Woo Youn .
CHEMICAL SCIENCE, 2022, 13 (13) :3661-3673
[44]   Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study [J].
Neves, Miguel A. D. ;
Reinstein, Oren ;
Saad, Makbul ;
Johnson, Philip E. .
BIOPHYSICAL CHEMISTRY, 2010, 153 (01) :9-16
[45]   Defining a Stem Length-Dependent Binding Mechanism for the Cocaine-Binding Aptamer. A Combined NMR and Calorimetry Study [J].
Neves, Miguel A. D. ;
Reinstein, Oren ;
Johnson, Philip E. .
BIOCHEMISTRY, 2010, 49 (39) :8478-8487
[46]   DeepDTA: deep drug-target binding affinity prediction [J].
Ozturk, Hakime ;
Ozgur, Arzucan ;
Ozkirimli, Elif .
BIOINFORMATICS, 2018, 34 (17) :821-829
[47]   Structure-based discovery of a novel, noncovalent inhibitor of AmpC β-lactamase [J].
Powers, RA ;
Morandi, F ;
Shoichet, BK .
STRUCTURE, 2002, 10 (07) :1013-1023
[48]   Quinine Binding by the Cocaine-Binding Aptamer. Thermodynamic and Hydrodynamic Analysis of High-Affinity Binding of an Off-Target Ligand [J].
Reinstein, Oren ;
Yoo, Mina ;
Han, Chris ;
Palmo, Tsering ;
Beckham, Simone A. ;
Wilce, Matthew C. J. ;
Johnson, Philip E. .
BIOCHEMISTRY, 2013, 52 (48) :8652-8662
[49]   Prediction of protein-ligand binding affinity from sequencing data with interpretable machine learning [J].
Rube, H. Tomas ;
Rastogi, Chaitanya ;
Feng, Siqian ;
Kribelbauer, Judith F. ;
Li, Allyson ;
Becerra, Basheer ;
Melo, Lucas A. N. ;
Do, Bach Viet ;
Li, Xiaoting ;
Adam, Hammaad H. ;
Shah, Neel H. ;
Mann, Richard S. ;
Bussemaker, Harmen J. .
NATURE BIOTECHNOLOGY, 2022, 40 (10) :1520-+
[50]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (03) :379-423