Exploring the impact of the dissipation coefficient in warm Higgs inflation

被引:1
作者
Cheng, Wei [1 ]
Chen, Xue-Wen [2 ]
Zhou, Ruiyu [1 ]
Jiang, Jiu-Jiang [1 ]
Dai, Xin-Rui [1 ]
Zhang, Zi-Han [1 ]
Qin, Tong [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
[2] Chongqing Univ Sci & Technol, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
COSMOLOGICAL CONSTANT; DENSITY PERTURBATIONS; UNIVERSE SCENARIO; PHASE-TRANSITION; MODEL; FLUCTUATIONS; DYNAMICS; FLATNESS; HORIZON; DECAY;
D O I
10.1103/PhysRevD.109.083509
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this study, we conduct a detailed analysis of the dissipation coefficient (Q) of warm Higgs inflation (WHI), which exerts important influences on the entire warm inflation process. By deriving the relationships between various quantities and Q, one can avoid a priori assumptions, i.e., strong dissipation (Q >> 1) or weak dissipation (Q << 1). Taking into account the constraints imposed by the cosmic microwave background, the dissipation the coefficient Q remains at extremely low levels throughout the entire warm inflation process, i.e., Q << 1. This observation indicates that WHI falls under the category of weak dissipation warm inflation. Despite being weak dissipation, Q still plays a non-negligible role in the evolution of temperature, energy, and other quantities. We delve into the impact of the primordial power spectrum on the dissipation coefficient Q during the warm inflation process, discovering that the dependency is not significant. Consequently, this results in a weak sensitivity of the gravitational wave spectrum (Omega(GW,0)h(2)) to changes in Q. In addition, the variation of tensor-to-scalar ratio r has a significant effect on the Omega(GW,0)h(2) of cold inflation and a small effect on WHI. Finally, gravitational waves generated by WHI hold the potential for verification in future observational experiments, especially through the SKA100 experiment.
引用
收藏
页数:10
相关论文
共 83 条
  • [1] LARGE-SCALE ANISOTROPY OF THE MICROWAVE BACKGROUND AND THE AMPLITUDE OF ENERGY DENSITY-FLUCTUATIONS IN THE EARLY UNIVERSE
    ABBOTT, LF
    WISE, MB
    [J]. ASTROPHYSICAL JOURNAL, 1984, 282 (02) : L47 - L50
  • [2] CONSTRAINTS ON GENERALIZED INFLATIONARY COSMOLOGIES
    ABBOTT, LF
    WISE, MB
    [J]. NUCLEAR PHYSICS B, 1984, 244 (02) : 541 - 548
  • [3] Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season
    Ade, P. A. R.
    Ahmed, Z.
    Amiri, M.
    Barkats, D.
    Thakur, R. Basu
    Bischoff, C. A.
    Beck, D.
    Bock, J. J.
    Boenish, H.
    Bullock, E.
    Buza, V
    Cheshire, J. R.
    Connors, J.
    Cornelison, J.
    Crumrine, M.
    Cukierman, A.
    Denison, E., V
    Dierickx, M.
    Duband, L.
    Eiben, M.
    Fatigoni, S.
    Filippini, J. P.
    Fliescher, S.
    Goeckner-Wald, N.
    Goldfinger, D. C.
    Grayson, J.
    Grimes, P.
    Hall, G.
    Halal, G.
    Halpern, M.
    Hand, E.
    Harrison, S.
    Henderson, S.
    Hildebrandt, S. R.
    Hilton, G. C.
    Hubmayr, J.
    Hui, H.
    Irwin, K. D.
    Kang, J.
    Karkare, K. S.
    Karpel, E.
    Kefeli, S.
    Kernasovskiy, S. A.
    Kovac, J. M.
    Kuo, C. L.
    Lau, K.
    Leitch, E. M.
    Lennox, A.
    Megerian, K. G.
    Minutolo, L.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (15)
  • [4] Planck 2015 results XIII. Cosmological parameters
    Ade, P. A. R.
    Aghanim, N.
    Arnaud, M.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Banday, A. J.
    Barreiro, R. B.
    Bartlett, J. G.
    Bartolo, N.
    Battaner, E.
    Battye, R.
    Benabed, K.
    Benoit, A.
    Benoit-Levy, A.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bonaldi, A.
    Bonavera, L.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Butler, R. C.
    Calabrese, E.
    Cardoso, J. -F.
    Catalano, A.
    Challinor, A.
    Chamballu, A.
    Chary, R. -R.
    Chiang, H. C.
    Chluba, J.
    Christensen, P. R.
    Church, S.
    Clements, D. L.
    Colombi, S.
    Colombo, L. P. L.
    Combet, C.
    Coulais, A.
    Crill, B. P.
    Curto, A.
    Cuttaia, F.
    Danese, L.
    Davies, R. D.
    Davis, R. J.
    de Bernardis, P.
    [J]. ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [5] COSMOLOGY FOR GRAND UNIFIED THEORIES WITH RADIATIVELY INDUCED SYMMETRY-BREAKING
    ALBRECHT, A
    STEINHARDT, PJ
    [J]. PHYSICAL REVIEW LETTERS, 1982, 48 (17) : 1220 - 1223
  • [6] On Warm Natural Inflation and Planck 2018 Constraints
    AlHallak, Mahmoud
    Al-Said, Khalil Kalid
    Chamoun, Nidal
    El-Daher, Moustafa Sayem
    [J]. UNIVERSE, 2023, 9 (02)
  • [7] Reheating in Inflationary Cosmology: Theory and Applications
    Allahverdi, Rouzbeh
    Brandenberger, Robert
    Cyr-Racine, Francis-Yan
    Mazumdar, Anupam
    [J]. ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 60, 2010, 60 : 27 - 51
  • [8] Nonperturbative dynamics of reheating after inflation: A review
    Amin, Mustafa A.
    Hertzberg, Mark P.
    Kaiser, David I.
    Karouby, Johanna
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2015, 24 (01):
  • [9] SPONTANEOUS CREATION OF ALMOST SCALE-FREE DENSITY PERTURBATIONS IN AN INFLATIONARY UNIVERSE
    BARDEEN, JM
    STEINHARDT, PJ
    TURNER, MS
    [J]. PHYSICAL REVIEW D, 1983, 28 (04): : 679 - 693
  • [10] Warming up for Planck
    Bartrum, Sam
    Berera, Arjun
    Rosa, Joao G.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (06):