Experimental and theoretical studies on self-diffusion in amorphous germanium

被引:1
作者
Boeckendorf, Tim [1 ]
Kirschbaum, Jan [1 ]
Kipke, Felix [1 ]
Bougeard, Dominique [2 ]
Hansen, John Lundsgaard [3 ]
Larsen, Arne Nylandsted [3 ]
Posselt, Matthias [4 ]
Bracht, Hartmut [1 ]
机构
[1] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
[2] Univ Regensburg, Inst Expt & Angew Phys, D-93040 Regensburg, Germany
[3] Aarhus Univ, Dept Phys & Astron, D-8000 Aarhus, Denmark
[4] Helmholtz Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
关键词
CRYSTALLIZATION; KINETICS; SILICON;
D O I
10.1063/5.0183578
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Self-diffusion in amorphous germanium is studied at temperatures between 325 and 370 degrees C utilizing amorphous isotopically controlled germanium multilayer structures. The isotope multilayer is epitaxially grown on a single crystalline germanium-on-insulator structure by means of molecular beam epitaxy and subsequently amorphized by self-ion implantation. After heat treatment, the diffusional broadening of the isotope structure is measured with time-of-flight secondary ion mass spectrometry. The temperature dependence of self-diffusion is accurately described by the Arrhenius equation with the activation enthalpy Q = (2.21 +/- 0.12) eV and pre-exponential factor D-0 = (2.32(-2.10)(+20.79)) cm(2) s(-1). The activation enthalpy equals the activation enthalpy of solid phase epitaxial recrystallization (SPER). This agreement suggests that self-diffusion in amorphous germanium is similar to SPER, also mainly mediated by local bond rearrangements. Classical molecular dynamics simulations with a modified Stillinger-Weber-type interatomic potential yield results that are consistent with the experimental data and support the proposed atomic mechanism.
引用
收藏
页数:8
相关论文
共 36 条
[1]  
Barna A., 1972, Journal of Non-Crystalline Solids, V8-10, P36, DOI 10.1016/0022-3093(72)90114-7
[2]  
BLUM NA, 1976, J NON-CRYST SOLIDS, V22, P29, DOI 10.1016/0022-3093(76)90004-1
[3]   Silicon self-diffusion in isotope heterostructures [J].
Bracht, H ;
Haller, EE ;
Clark-Phelps, R .
PHYSICAL REVIEW LETTERS, 1998, 81 (02) :393-396
[4]   KINETICS OF TRANSFORMATION IN AMORPHOUS-GERMANIUM ALLOY-FILMS [J].
CHOPRA, KL ;
RANDHAWA, HS ;
MALHOTRA, LK .
THIN SOLID FILMS, 1977, 47 (03) :203-210
[5]   Amorphous silicon and silicon germanium materials for high-efficiency triple-junction solar cells [J].
Deng, XM ;
Liao, XB ;
Han, SJ ;
Povolny, H ;
Agarwal, P .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 62 (1-2) :89-95
[6]   INITIAL CRYSTALLIZATION STAGE OF AMORPHOUS-GERMANIUM FILMS [J].
EDELMAN, F ;
KOMEM, Y ;
BENDAYAN, M ;
BESERMAN, R .
JOURNAL OF APPLIED PHYSICS, 1992, 72 (11) :5153-5157
[7]   CRYSTALLIZATION KINETICS OF AMORPHOUS-GERMANIUM [J].
GERMAIN, P ;
SQUELARD, S ;
BOURGOIN, J ;
GHEORGHIU, A .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (05) :1909-1913
[8]   CRYSTALLIZATION IN AMORPHOUS-GERMANIUM [J].
GERMAIN, P ;
ZELLAMA, K ;
SQUELARD, S ;
BOURGOIN, JC ;
GHEORGHIU, A .
JOURNAL OF APPLIED PHYSICS, 1979, 50 (11) :6986-6994
[9]   Activation energy of diffusion determined from a single in-situ neutron reflectometry experiment [J].
Hueger, Erwin ;
Stahn, Jochen ;
Schmidt, Harald .
MATERIALS RESEARCH LETTERS, 2023, 11 (01) :53-59
[10]   In-situ Measurement of Self-Atom Diffusion in Solids Using Amorphous Germanium as a Model System [J].
Hueger, Erwin ;
Strauss, Florian ;
Stahn, Jochen ;
Deubener, Joachim ;
Bruns, Michael ;
Schmidt, Harald .
SCIENTIFIC REPORTS, 2018, 8