Criticality in Sperner's Lemma

被引:0
|
作者
Kaiser, Tomas [1 ,2 ]
Stehlik, Matej [3 ]
Skrekovski, Riste [4 ,5 ]
机构
[1] Univ West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
[2] Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech Republic
[3] Univ Paris Cite, CNRS, IRIF, F-75006 Paris, France
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
GRAPHS;
D O I
10.1007/s00493-024-00104-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question posed by Gallai in 1969 concerning criticality in Sperner's lemma, listed as Problem 9.14 in the collection of Jensen and Toft (Graph coloring problems, Wiley, New York, 1995). Sperner's lemma states that if a labelling of the vertices of a triangulation of the d-simplex Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} with labels 1,2,& mldr;,d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1, 2, \ldots , d+1$$\end{document} has the property that (i) each vertex of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} receives a distinct label, and (ii) any vertex lying in a face of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} has the same label as one of the vertices of that face, then there exists a rainbow facet (a facet whose vertices have pairwise distinct labels). For d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}, it is not difficult to show that for every facet sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, there exists a labelling with the above properties where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the unique rainbow facet. For every d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, however, we construct an infinite family of examples where this is not the case, which implies the answer to Gallai's question as a corollary. The construction is based on the properties of a 4-polytope which had been used earlier to disprove a claim of Motzkin on neighbourly polytopes.
引用
收藏
页码:1041 / 1051
页数:11
相关论文
共 50 条
  • [41] Beyond the Lovasz Local Lemma: Point to Set Correlations and Their Algorithmic Applications
    Achlioptas, Dimitris
    Iliopoulos, Fotis
    Sinclair, Alistair
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 725 - 744
  • [42] Some toy models of self-organized criticality in percolation
    Cerf, Raphael
    Forien, Nicolas
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 (01): : 367 - 416
  • [43] Quantum criticality for extended nodes on a Bethe lattice in the large connectivity limit
    Murray, James M.
    Del Maestro, Adrian
    Tesanovic, Zlatko
    PHYSICAL REVIEW B, 2012, 85 (11):
  • [44] A rainbow blow-up lemma for almost optimally bounded edge-colourings
    Ehard, Stefan
    Glock, Stefan
    Joos, Felix
    FORUM OF MATHEMATICS SIGMA, 2020, 8
  • [45] Quantifying Entity Criticality for Fault Impact Analysis and Dependability Enhancement in Software-Defined Networks
    Huang, Song
    Deng, Zhiang
    Fu, Song
    2016 IEEE 35TH INTERNATIONAL PERFORMANCE COMPUTING AND COMMUNICATIONS CONFERENCE (IPCCC), 2016,
  • [46] Witness Trees in the Moser-Tardos Algorithmic Lovasz Local Lemma and Penrose Trees in the Hard-Core Lattice Gas
    Alves, Rogerio Gomes
    Procacci, Aldo
    JOURNAL OF STATISTICAL PHYSICS, 2014, 156 (05) : 877 - 895
  • [47] Equivalence of Jackson's and Thomassen's conjectures
    Cada, Roman
    Chiba, Shuya
    Ozeki, Kenta
    Vrana, Petr
    Yoshimoto, Kiyoshi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 114 : 124 - 147
  • [48] TURAN'S THEOREM IMPLIES STANLEY'S BOUND
    Nikiforov, V
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) : 601 - 605
  • [49] A SOLUTION TO ERD?S AND HAJNAL?S ODD CYCLE PROBLEM
    Liu, Hong
    Montgomery, Richard
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 36 (04) : 1191 - 1234
  • [50] ORE'S CONJECTURE FOR k=4 AND GROTZSCH'S THEOREM
    Kostochka, Alexandr
    Yancey, Matthew
    COMBINATORICA, 2014, 34 (03) : 323 - 329