Criticality in Sperner's Lemma

被引:0
|
作者
Kaiser, Tomas [1 ,2 ]
Stehlik, Matej [3 ]
Skrekovski, Riste [4 ,5 ]
机构
[1] Univ West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
[2] Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech Republic
[3] Univ Paris Cite, CNRS, IRIF, F-75006 Paris, France
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
GRAPHS;
D O I
10.1007/s00493-024-00104-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question posed by Gallai in 1969 concerning criticality in Sperner's lemma, listed as Problem 9.14 in the collection of Jensen and Toft (Graph coloring problems, Wiley, New York, 1995). Sperner's lemma states that if a labelling of the vertices of a triangulation of the d-simplex Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} with labels 1,2,& mldr;,d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1, 2, \ldots , d+1$$\end{document} has the property that (i) each vertex of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} receives a distinct label, and (ii) any vertex lying in a face of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} has the same label as one of the vertices of that face, then there exists a rainbow facet (a facet whose vertices have pairwise distinct labels). For d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}, it is not difficult to show that for every facet sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, there exists a labelling with the above properties where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the unique rainbow facet. For every d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, however, we construct an infinite family of examples where this is not the case, which implies the answer to Gallai's question as a corollary. The construction is based on the properties of a 4-polytope which had been used earlier to disprove a claim of Motzkin on neighbourly polytopes.
引用
收藏
页码:1041 / 1051
页数:11
相关论文
共 50 条
  • [31] General Transmission Lemma and Wiener complexity of triangular grids
    Klavzar, Sandi
    Jemilet, D. Azubha
    Rajasingh, Indra
    Manuel, Paul
    Parthiban, N.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 115 - 122
  • [32] DOUBLING METRIC SPACES ARE CHARACTERIZED BY A LEMMA OF BENJAMINI AND SCHRAMM
    Gill, James T.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (12) : 4291 - 4295
  • [33] An Approximate Blow-up Lemma for Sparse Hypergraphs
    Allen, Peter
    Boettcher, Julia
    Hng, Eng Keat
    Skokan, Jozef
    Davies, Ewan
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 394 - 403
  • [34] Network topology near criticality in adaptive epidemics
    Horstmeyer, Leonhard
    Kuehn, Christian
    Thurner, Stefan
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [35] Criticality of Counterexamples to Toroidal Edge-Hamiltonicity
    Ellingham, M. N.
    Marshall, Emily A.
    GRAPHS AND COMBINATORICS, 2016, 32 (01) : 111 - 121
  • [36] On minimum leaf spanning trees and a criticality notion
    Ozeki, Kenta
    Wiener, Gabor
    Zamfirescu, Carol T.
    DISCRETE MATHEMATICS, 2020, 343 (07)
  • [37] AN ALGORITHMIC PROOF OF THE LOVASZ LOCAL LEMMA VIA RESAMPLING ORACLES
    Harvey, Nicholas J. A.
    Vondrak, Jan
    SIAM JOURNAL ON COMPUTING, 2020, 49 (02) : 394 - 428
  • [38] The bifurcation lemma for strong properties in the inverse eigenvalue problem of a graph
    Fallat, Shaun M.
    Hall, H. Tracy
    Lin, Jephian C. -H.
    Shader, Bryan L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 648 : 70 - 87
  • [39] A Short Proof of the Blow-Up Lemma for Approximate Decompositions
    Ehard, Stefan
    Joos, Felix
    COMBINATORICA, 2022, 42 (06) : 771 - 819
  • [40] Rigid Cluster Decomposition Reveals Criticality in Frictional Jamming
    Henkes, Silke
    Quint, David A.
    Fily, Yaouen
    Schwarz, J. M.
    PHYSICAL REVIEW LETTERS, 2016, 116 (02)