机构:
Univ West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech RepublicUniv West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
Kaiser, Tomas
[1
,2
]
Stehlik, Matej
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Cite, CNRS, IRIF, F-75006 Paris, FranceUniv West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
Stehlik, Matej
[3
]
Skrekovski, Riste
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
Fac Informat Studies, Novo Mesto 8000, SloveniaUniv West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
Skrekovski, Riste
[4
,5
]
机构:
[1] Univ West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
[2] Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech Republic
[3] Univ Paris Cite, CNRS, IRIF, F-75006 Paris, France
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Fac Informat Studies, Novo Mesto 8000, Slovenia
We answer a question posed by Gallai in 1969 concerning criticality in Sperner's lemma, listed as Problem 9.14 in the collection of Jensen and Toft (Graph coloring problems, Wiley, New York, 1995). Sperner's lemma states that if a labelling of the vertices of a triangulation of the d-simplex Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} with labels 1,2,& mldr;,d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1, 2, \ldots , d+1$$\end{document} has the property that (i) each vertex of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} receives a distinct label, and (ii) any vertex lying in a face of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} has the same label as one of the vertices of that face, then there exists a rainbow facet (a facet whose vertices have pairwise distinct labels). For d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}, it is not difficult to show that for every facet sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, there exists a labelling with the above properties where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the unique rainbow facet. For every d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, however, we construct an infinite family of examples where this is not the case, which implies the answer to Gallai's question as a corollary. The construction is based on the properties of a 4-polytope which had been used earlier to disprove a claim of Motzkin on neighbourly polytopes.
机构:
Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, EnglandUniv Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
Kim, Jaehoon
Kuhn, Daniela
论文数: 0引用数: 0
h-index: 0
机构:
Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, EnglandUniv Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
Kuhn, Daniela
Osthus, Deryk
论文数: 0引用数: 0
h-index: 0
机构:
Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, EnglandUniv Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
Osthus, Deryk
Tyomkyn, Mykhaylo
论文数: 0引用数: 0
h-index: 0
机构:
Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
Univ Oxford, Math Inst, Oxford OX2 6GG, EnglandUniv Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England