Criticality in Sperner's Lemma

被引:0
|
作者
Kaiser, Tomas [1 ,2 ]
Stehlik, Matej [3 ]
Skrekovski, Riste [4 ,5 ]
机构
[1] Univ West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
[2] Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech Republic
[3] Univ Paris Cite, CNRS, IRIF, F-75006 Paris, France
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
GRAPHS;
D O I
10.1007/s00493-024-00104-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question posed by Gallai in 1969 concerning criticality in Sperner's lemma, listed as Problem 9.14 in the collection of Jensen and Toft (Graph coloring problems, Wiley, New York, 1995). Sperner's lemma states that if a labelling of the vertices of a triangulation of the d-simplex Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} with labels 1,2,& mldr;,d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1, 2, \ldots , d+1$$\end{document} has the property that (i) each vertex of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} receives a distinct label, and (ii) any vertex lying in a face of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} has the same label as one of the vertices of that face, then there exists a rainbow facet (a facet whose vertices have pairwise distinct labels). For d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}, it is not difficult to show that for every facet sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, there exists a labelling with the above properties where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the unique rainbow facet. For every d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, however, we construct an infinite family of examples where this is not the case, which implies the answer to Gallai's question as a corollary. The construction is based on the properties of a 4-polytope which had been used earlier to disprove a claim of Motzkin on neighbourly polytopes.
引用
收藏
页码:1041 / 1051
页数:11
相关论文
共 50 条
  • [21] The weighted version of the handshaking lemma with an application
    Wu, Baoyindureng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, : 1 - 5
  • [22] A rainbow blow-up lemma
    Glock, Stefan
    Joos, Felix
    RANDOM STRUCTURES & ALGORITHMS, 2020, 56 (04) : 1031 - 1069
  • [23] Extendability and Criticality in Matching Theory
    Aldred, R. E. L.
    Plummer, Michael D.
    GRAPHS AND COMBINATORICS, 2020, 36 (03) : 573 - 589
  • [24] PRIME CRITICALITY AND PRIME COVERING
    Boudabbous, Imed
    Dammak, Jamel
    Yaich, Mouna
    MATHEMATICAL REPORTS, 2020, 22 (3-4): : 191 - 203
  • [25] A Crossing Lemma for the Pair-Crossing Number
    Ackerman, Eyal
    Schaefer, Marcus
    GRAPH DRAWING (GD 2014), 2014, 8871 : 222 - 233
  • [26] A Schwarz-Pick lemma for minimal maps
    Savas-Halilaj, Andreas
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2019, 56 (02) : 193 - 201
  • [27] A BLOW-UP LEMMA FOR APPROXIMATE DECOMPOSITIONS
    Kim, Jaehoon
    Kuhn, Daniela
    Osthus, Deryk
    Tyomkyn, Mykhaylo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (07) : 4655 - 4742
  • [28] Crossing lemma for the odd-crossing number
    Karl, Janos
    Toth, Geza
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2023, 108
  • [29] Limits of kernel operators and the spectral regularity lemma
    Szegedy, Balazs
    EUROPEAN JOURNAL OF COMBINATORICS, 2011, 32 (07) : 1156 - 1167
  • [30] Primality, criticality and minimality problems in trees
    Marweni, Walid
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (04)