Criticality in Sperner's Lemma

被引:0
|
作者
Kaiser, Tomas [1 ,2 ]
Stehlik, Matej [3 ]
Skrekovski, Riste [4 ,5 ]
机构
[1] Univ West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
[2] Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech Republic
[3] Univ Paris Cite, CNRS, IRIF, F-75006 Paris, France
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
GRAPHS;
D O I
10.1007/s00493-024-00104-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question posed by Gallai in 1969 concerning criticality in Sperner's lemma, listed as Problem 9.14 in the collection of Jensen and Toft (Graph coloring problems, Wiley, New York, 1995). Sperner's lemma states that if a labelling of the vertices of a triangulation of the d-simplex Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} with labels 1,2,& mldr;,d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1, 2, \ldots , d+1$$\end{document} has the property that (i) each vertex of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} receives a distinct label, and (ii) any vertex lying in a face of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} has the same label as one of the vertices of that face, then there exists a rainbow facet (a facet whose vertices have pairwise distinct labels). For d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}, it is not difficult to show that for every facet sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, there exists a labelling with the above properties where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the unique rainbow facet. For every d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, however, we construct an infinite family of examples where this is not the case, which implies the answer to Gallai's question as a corollary. The construction is based on the properties of a 4-polytope which had been used earlier to disprove a claim of Motzkin on neighbourly polytopes.
引用
收藏
页码:1041 / 1051
页数:11
相关论文
共 50 条
  • [11] An Efficient Container Lemma
    Balogh, Jozsef
    Samotij, Wojciech
    DISCRETE ANALYSIS, 2020,
  • [12] A bipartite strengthening of the Crossing Lemma
    Fox, Jacob
    Pach, Janos
    Toth, Csaba D.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (01) : 23 - 35
  • [13] A short proof of the wonderful lemma
    Chudnovsky, Maria
    JOURNAL OF GRAPH THEORY, 2018, 87 (03) : 271 - 274
  • [14] A STABILITY RESULT OF THE POSA LEMMA
    Ma, Jie
    Yuan, Long-Tu
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1757 - 1783
  • [15] Criticality for multicommodity flows
    Seymour, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 110 : 136 - 179
  • [16] Approach to criticality in sandpiles
    Fey, Anne
    Levine, Lionel
    Wilson, David B.
    PHYSICAL REVIEW E, 2010, 82 (03):
  • [17] Polynomial Removal Lemma for Ordered Matchings
    Gishboliner, Lior
    Simic, Borna
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):
  • [18] The Weight Function Lemma for graph pebbling
    Hurlbert, Glenn
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (02) : 343 - 361
  • [19] A Hypergraph Blow-Up Lemma
    Keevash, Peter
    RANDOM STRUCTURES & ALGORITHMS, 2011, 39 (03) : 275 - 372
  • [20] Notes on acyclic orientations and the shelling lemma
    Fukuda, K
    Prodon, A
    Sakuma, T
    THEORETICAL COMPUTER SCIENCE, 2001, 263 (1-2) : 9 - 16