Criticality in Sperner's Lemma

被引:0
|
作者
Kaiser, Tomas [1 ,2 ]
Stehlik, Matej [3 ]
Skrekovski, Riste [4 ,5 ]
机构
[1] Univ West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
[2] Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech Republic
[3] Univ Paris Cite, CNRS, IRIF, F-75006 Paris, France
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
GRAPHS;
D O I
10.1007/s00493-024-00104-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question posed by Gallai in 1969 concerning criticality in Sperner's lemma, listed as Problem 9.14 in the collection of Jensen and Toft (Graph coloring problems, Wiley, New York, 1995). Sperner's lemma states that if a labelling of the vertices of a triangulation of the d-simplex Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} with labels 1,2,& mldr;,d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1, 2, \ldots , d+1$$\end{document} has the property that (i) each vertex of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} receives a distinct label, and (ii) any vertex lying in a face of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} has the same label as one of the vertices of that face, then there exists a rainbow facet (a facet whose vertices have pairwise distinct labels). For d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}, it is not difficult to show that for every facet sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, there exists a labelling with the above properties where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the unique rainbow facet. For every d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, however, we construct an infinite family of examples where this is not the case, which implies the answer to Gallai's question as a corollary. The construction is based on the properties of a 4-polytope which had been used earlier to disprove a claim of Motzkin on neighbourly polytopes.
引用
收藏
页码:1041 / 1051
页数:11
相关论文
共 50 条
  • [1] On the Black-Box Complexity of Sperner's Lemma
    Friedl, Katalin
    Ivanyos, Gabor
    Santha, Miklos
    Verhoeven, Yves F.
    THEORY OF COMPUTING SYSTEMS, 2009, 45 (03) : 629 - 646
  • [2] A generalization of Gale's lemma
    Alishahi, Meysam
    Hajiabolhassan, Hossein
    JOURNAL OF GRAPH THEORY, 2018, 88 (02) : 337 - 346
  • [3] On a generalization of Kelly's combinatorial lemma
    Ben Amira, Aymen
    Dammak, Jamel
    Si Kaddour, Hamza
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (06) : 949 - 964
  • [4] On Whitehead's cut vertex lemma
    Lyman, Rylee Alanza
    JOURNAL OF GROUP THEORY, 2023, 26 (04) : 665 - 675
  • [5] A generalization of Fiedler's lemma and some applications
    Cardoso, Domingos M.
    Gutman, Ivan
    Martins, Enide Andrade
    Robbiano, Maria
    LINEAR & MULTILINEAR ALGEBRA, 2011, 59 (08): : 929 - 942
  • [6] A generalization of Fiedler's lemma and its applications
    Wu, Yangyang
    Ma, Xiaoling
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 604 - 620
  • [7] Decomposing 1-Sperner hypergraphs
    Boros, Endre
    Gurvich, Vladimir
    Milanic, Martin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (03):
  • [8] Cutting lemma and union lemma for the domination game
    Dorbec, Paul
    Henning, Michael A.
    Klavzar, Sandi
    Kosmrlj, Gasper
    DISCRETE MATHEMATICS, 2019, 342 (04) : 1213 - 1222
  • [9] A tight lower bound for Szemer,di's regularity lemma
    Fox, Jacob
    Lovasz, Laszlo Miklos
    COMBINATORICA, 2017, 37 (05) : 911 - 951
  • [10] A Set and Collection Lemma
    Levit, Vadim E.
    Mandrescu, Eugen
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):