Common mistakes in biostatistics

被引:5
作者
D'Arrigo, Graziella [1 ]
El Hafeez, Samar Abd [2 ]
Mezzatesta, Sabrina [1 ]
Abelardo, Domenico [3 ]
Provenzano, Fabio Pasquale [1 ]
Vilasi, Antonio [1 ]
Torino, Claudia [1 ]
Tripepi, Giovanni [1 ]
机构
[1] Inst Clin Physiol, CNR IFC, Reggio Di Calabria, Italy
[2] Alexandria Univ, High Inst Publ Hlth, Epidemiol Dept, Alexandria, Egypt
[3] Magna Grecia Univ, Great Metropolitan BMM Hosp, Catanzaro & Reg Epilepsy Ctr, Dept Med & Surg Sci, Reggio Di Calabria, Italy
关键词
methodological errors; mistakes in biostatistics; mistakes in clinical epidemiology; CONFIDENCE-INTERVALS; P-VALUES;
D O I
10.1093/ckj/sfae197
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Biostatistics plays a pivotal role in developing, interpreting and drawing conclusions from clinical, biological and epidemiological data. However, the improper application of statistical methods can lead to erroneous conclusions and misinterpretations. This paper provides a comprehensive examination of the most frequent mistakes encountered in the biostatistical analysis process. We identified and elucidated 10 common errors in biostatistical analysis. These include using the wrong metric to describe data, misinterpreting P-values, misinterpreting the 95% confidence interval, misinterpreting the hazard ratio as an index of prognostic accuracy, ignoring the sample size calculation, misinterpreting analysis by strata in randomized clinical trials, confusing correlation and causation, misunderstanding confounders and mediators, inadequately codifying variables during the data collection, and bias arising when group membership is attributed on the basis of future exposure in retrospective studies. We discuss the implications of these errors and propose some practical strategies to mitigate their impact. By raising awareness of these pitfalls, this paper aims to enhance the rigor and reproducibility of biostatistical analyses, thereby fostering more robust and reliable biomedical research findings. 10.1093/ckj/sfae197 Video Abstract Watch the video abstract of this contribution https://academic.oup.com/ckj/pages/author_videos sfae197Media1 6359330230112
引用
收藏
页数:7
相关论文
共 24 条
  • [1] Methods to Analyze Time-to-Event Data: The Cox Regression Analysis
    Abd ElHafeez, Samar
    D'Arrigo, Graziella
    Leonardis, Daniela
    Fusaro, Maria
    Tripepi, Giovanni
    Roumeliotis, Stefanos
    [J]. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY, 2021, 2021
  • [2] THE NORMAL-DISTRIBUTION
    ALTMAN, DG
    BLAND, JM
    [J]. BRITISH MEDICAL JOURNAL, 1995, 310 (6975) : 298 - 298
  • [3] Subgroup analyses in randomized trials-more rigour needed
    Altman, Douglas G.
    [J]. NATURE REVIEWS CLINICAL ONCOLOGY, 2015, 12 (09) : 506 - U23
  • [4] Retire statistical significance
    Amrhein, Valentin
    Greenland, Sander
    McShane, Blake
    [J]. NATURE, 2019, 567 (7748) : 305 - 307
  • [5] THE MODERATOR MEDIATOR VARIABLE DISTINCTION IN SOCIAL PSYCHOLOGICAL-RESEARCH - CONCEPTUAL, STRATEGIC, AND STATISTICAL CONSIDERATIONS
    BARON, RM
    KENNY, DA
    [J]. JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 1986, 51 (06) : 1173 - 1182
  • [6] Defining measures of kidney function in observational studies using routine health care data: methodological and reporting considerations
    Carrero, Juan Jesus
    Fu, Edouard L.
    Vestergaard, Soren V.
    Jensen, Simon Kok
    Gasparini, Alessandro
    Mahalingasivam, Viyaasan
    Bell, Samira
    Birn, Henrik
    Heide-Jorgensen, Uffe
    Clase, Catherine M.
    Cleary, Faye
    Coresh, Josef
    Dekker, Friedo W.
    Gansevoort, Ron T.
    Hemmelgarn, Brenda R.
    Jager, Kitty J.
    Jafar, Tazeen H.
    Kovesdy, Csaba P.
    Sood, Manish M.
    Stengel, Benedicte
    Christiansen, Christian F.
    Iwagami, Masao
    Nitsch, Dorothea
    [J]. KIDNEY INTERNATIONAL, 2023, 103 (01) : 53 - 69
  • [7] A systematic review of statistical methodology used to evaluate progression of chronic kidney disease using electronic healthcare records
    Cleary, Faye
    Prieto-Merino, David
    Nitsch, Dorothea
    [J]. PLOS ONE, 2022, 17 (07):
  • [8] Effect modification, interaction and mediation: an overview of theoretical insights for clinical investigators
    Corraini, Priscila
    Olsen, Morten
    Pedersen, Lars
    Dekkers, Olaf M.
    Vandenbroucke, Jan P.
    [J]. CLINICAL EPIDEMIOLOGY, 2017, 9 : 331 - 338
  • [9] Varieties of Confidence Intervals
    Cousineau, Denis
    [J]. ADVANCES IN COGNITIVE PSYCHOLOGY, 2017, 13 (02) : 140 - 155
  • [10] Valid P-Values Behave Exactly as They Should: Some Misleading Criticisms of P-Values and Their Resolution With S-Values
    Greenland, Sander
    [J]. AMERICAN STATISTICIAN, 2019, 73 : 106 - 114